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SVAR: 
 
B0Yt = B(L)Yt−1 + εt 
 
Identification Issues: 
 
1. What are the shocks that KM are trying to estimate? 
 
2. What restrictions do KM impose on the SVAR to estimate these 
shocks? 
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B0Yt = B(L)Yt−1 + εt 
 
 

Impact Effects (weak) 
 Unobserved Shocks 
Observables εFlow Supply εFlow Demand εSpeculativeDemand εOther
Oil 
Production 

↓ ↑ ↑  

Real Activity ↓ ↑ ↓  
Price of Oil ↑ ↑ ↑  
Inventories   ↑  
 
ε :  VAR Unanticipated Shocks 
 
εSpeculative Demand captures shocks to Flow Supply and Flow Demand that are 
anticipated using wider information set. (“Omitted Variable Bias”). 
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Identifying SVARs using Sign Restrictions, etc. 
 
SVAR:  B0Yt = B(L)Yt−1 + εt 
 
VAR: Yt = A(L)Yt−1 + et   where 1

0( ) ( )A L B B L−=  and et = 1
0B− εt 

 
Dynamic Simultaneous Equation Parameterization of Bivariate SVAR: 
 
                                   Y1t = −b0,12Y2t + lags + ε1t 
 
                                   Y2t = −b0,21Y1t + lags + ε2t  
 
 Restrictions: E(ε1tε2t) = 0 and B0 has 1’s on diagonal. 
 
1 additional restriction needed for identification  
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     Y1t = −b0,12Y2t + lags + ε1t 

 
                                   Y2t = −b0,21Y1t + lags + ε2t  
 
 Set Identification: 
 
    Suppose b0,12 = 0.0  … compute implied SVAR 
                        Suppose b0,12 = 1.0  … compute implied SVAR 
                        Suppose b0,12  = 3.14 … compute implied SVAR  
                                     … 
Suppose Yt = AYt−1 + et , with A and Σe known.  
 
Let γ denote a set of IRFs or other parameters of interest.  Then γ = γ(A, 
Σe, b0,12), 
 
 
Identified Set is: Γ = {γ | γ = γ(A, Σe, b0,12) and −∞ ≤ b0,12 ≤ ∞}  
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Impulse Responses:  Yt = AYt−1 + et   where et = 1

0B− εt 
 

Suppose ,i t k
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⎡ ⎤= ⎣ ⎦∂
 

 
With A known, this imposes restrictions on B0. 
 
Set Identification: 
  Suppose b0,12 = 0.0  … compute implied SVAR (violates sign restriction) 
  Suppose b0,12 = 1.0  … compute implied SVAR (OK sign restriction) 
  Suppose b0,12  = 3.14 … compute implied SVAR (OK sign restriction) 
                                              etc. 
   
Sign Restrions imply 0,12 Rb B∈  
 
Identified Set:  Γ = {γ | γ = γ(A, Σe, b0,12) and 0,12 Rb B∈ } 
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Estimates of identified sets (Faust, Swanson, Wright (2003), Fig 3) 
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Yt = AYt−1 + et  
 
Dynamic Simulatenous Parameterization:  
               et = 1

0B− εt, Β0 has ones on diagonal,  Σε is diagonal 
 
Alternative Parameterization:  et = Cεt,  Σε = I 
 
Identification using alternative paramterization:   
        Σe = CΣεC′ = CC′ = CR(CR)′ for any R that satisfies RR′ = I 
 
Thus C = 1/2

eΣ R, where 1/2
eΣ  is the Cholesky factor of Σe and R is an 

orthonormal matrix.  Bivariate model 
 

cos sin
sin cos

R
θ θ
θ θ

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, so θ indexes the set of identified models. 
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 Mechanics:  Suppose Yt = AYt−1 + et , with A and Σe known. 
 
Let γ denote a set of IRFs or other parameters of interest.  Then  
γ = γ(A, Σe, θ), 
 
Identified Set is: Γ = {γ | γ = γ(A, Σe, θ) and 0 ≤ θ ≤ 2π) 
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Sign Restricted Identified Set:  θ R∈Θ , so that  
 
Γ = {γ | γ = γ(A, Σe, θ) and θ R∈Θ ). 
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Uncertainty and Identified Set: 
 
All points in Γ are consistent with data.  Data can’t be used to say 
anything about which points are more “likely”. 
 
Bayesian:  Prior knowledge about the parameter that indexes the identified 
set (b0,12  or θ).  Use this prior to assign weights/probabilities to points in 
identified set.  Compute “Averages”, “Credible Sets”, and so forth. 
 
2 Key things: 
 
(1) Results are based on the prior, not the data.  Thus results are only as 
good as the prior. 
 
(2) Priors can be subtle in nonlinear models like these. 
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How are priors on b0,12 and θ  related? 
 

Bivariate Model: 
1

1e

ρ
ρ
⎡ ⎤

Σ = ⎢ ⎥
⎣ ⎦

 

 
Simultaneous equation model: Y1t = −b0,12Y2t + lags + ε1t 
 
Rotation:          Σe = 1/2

eΣ R(θ)R(θ)′ 1/2
eΣ

′.   
 
 
b0,12 = b(θ),  where b is a nonlinear function 
 
 
Suppose Prior on θ is uniform.  What is implied prior on b0,12 ? 
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Prior: θ  uniform on 0 to π … Implied prior for b0,12 … 
1 0.9

0.9 1e
⎡ ⎤

Σ = ⎢ ⎥
⎣ ⎦
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Prior: θ  uniform on 0 to π … Implied prior for b0,12 … 
1 0.9
0.9 1e

−⎡ ⎤
Σ = ⎢ ⎥−⎣ ⎦
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Prior on θ is flat and does not depend on Σe. 
 
 
 
 
Implied Prior on b0,12 is not flat, not symmetric, and depends on Σe. 
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VAR: Yt = A(L)Yt−1 + et    
 
What about sampling uncertainty about A(L) and Σe. 
 
 
Identified set:  Γ = {γ | γ = γ(A, Σe, b0,12) and 0,12 Rb B∈ } 
 
 
Frequentist Confidence Set over identified sets: 
 
   Let Ξ (Y)  denote a 95% set for A, Σe … [ ]( , )eP A Σ ∈Ξ = 0.95 
 
   Confidence set :  Γ = {γ | γ = γ(A, Σe, b0,12), ( , )eA Σ ∈Ξ, and 0,12 Rb B∈ } 
   

 
  Moon, Schorfheide, Granziera, Lee (2009) 
   
  Faust, Swanson, Wright (2003) 
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Estimates of identified sets (Faust, Swanson, Wright (2003), Fig 3) 
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Confidence sets for identified sets (Faust, Swanson, Wright (2003) , Fig 4) 
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Lessons: 
 
• Reporting Results On Identified Sets is nonstandard.   
• There aren’t frequentist  “point estimates”  to report 
• Bayesian results (point estimates as posterior means, credible sets) 

depend critically on priors.  Priors are subtle. 
 

Returning to Kilian and Murphy …  
 
 
Returning to Kilian and Murphy … 
 
 


