The Macroeconomic Effects of Oil Price Shocks

James D. Hamilton

Dept of Economics UCSD

Crude oil producer price index and U.S. recessions

1. Effects on potential GDP

$K=$ capital stock
$N=$ employment
$E=$ energy
$Y=F(K, N, E)$

$$
\begin{aligned}
& Y=F(K, N, E) \\
& \frac{\partial Y}{\partial E}=P_{E} / P \\
& \quad \Rightarrow \frac{\partial \ln Y}{\partial \ln E}=\frac{P_{E} E}{P Y} \\
& \frac{\partial \ln Y}{\partial \ln (P E P)}=\frac{\partial \ln Y}{\partial \ln E} \frac{\partial \ln E}{\partial \ln (P E / P)} \\
& \quad=\text { (expenditure share) } \times \text { (elasticity) }
\end{aligned}
$$

2. Effects on aggregate and sectoral demand

E.g., if

- 5% of consumer spending goes to energy $\left(\alpha_{t}=\right.$ 0.05)
- energy price goes up 20\%
- consumers purchase same quantity of energy
then
- saving or other spending must decline by 1%

Pre-2007 estimated impulse-response function (and 95\% confidence intervals) relating 100 times log of real consumption spending to energy price increase that would reduce spending power by 1%

Reproduces Figure 8a in Edelstein and Kilian (2007)

Pre-2007 estimated impulse-response functions.

Reproduces Figure 8b-d in Edelstein and Kilian (2007)

Pre-2007 estimated impulse-response functions.

Reproduces Figure 8e in Edelstein and Kilian (2007)

Pre-2007 estimated impulse-response functions.

Reproduces Figure 11a in Edelstein and Kilian (2007)

3. What's changed?

		Share of GDP (percent)	Standard deviation (quarterly percent changes, annual rate)	Share of GDP volatility (percent)
Goods and services	$\begin{aligned} & 1967 \text { to } \\ & 1985^{+} \end{aligned}$	100	4.3	100
	$\begin{gathered} 1986 \text { to } \\ 2007 \end{gathered}$	100	2.1	100
	$\begin{aligned} & 1986 \text { to } \\ & \text { 2009Q } \end{aligned}$	100	2.5	100
. . Goods	$\begin{aligned} & 1967 \text { to } \\ & 1985^{+} \end{aligned}$	37	9.2	54
	$\begin{aligned} & 1986 \text { to } \\ & 2007 \end{aligned}$	30	5.0	51
	$\begin{aligned} & \text { 1986 to } \\ & \text { 2009Q } 3 \end{aligned}$	30	5.6	50
Motor vehicles	$\begin{aligned} & 1967 \text { to } \\ & 1985^{+} \end{aligned}$	4.0	38.1	22
	$\begin{gathered} 1986 \text { to } \\ 2007 \end{gathered}$	3.5	19.2	14
	$\begin{aligned} & 1986 \text { to } \\ & 20090 \end{aligned}$	3.3	24.9	16

Source: Ramey and Vine (2010)

4. Experience in the 2007-2009 recession

Down 26\% July 07 to July 08

Down 6\% July 07 to July 08

Up 14\% July 07 to July 08

Down 22\% July 07 to July 08

Cumulative change in seasonally adjusted number of workers in motor vehicles and parts manufacturing between July, 1990 or July 2007 and indicated month, in thousands of workers. (Total employment: $1990=109$ million; $2007=138$ million $)$

Black: 100 times log of actual real consumption
Blue: forecast formed 2007:M9
Green: Edelstein-Kilian forecast if we knew ex-post innovations energy price

Black: 100 times log of actual real spending on motor vehicles \& parts Blue: forecast formed 2007:M9
Green: forecast if we knew ex-post innovations in energy price

Motor vehicles

Black: Actual value for Michigan index of consumer sentiment Blue: forecast formed 2007:M9
Green: forecast if we knew ex-post innovations in energy price

Dynamic simulation of eq. (3.8) in Hamilton (2003) using oil prices of 2007:Q4-2008:Q3

But what about housing?

(a) Average contribution of residential fixed investment to annual GDP growth rate
2006:Q2 - 2007:Q3 -1.04\%
2007:Q4-2008:Q3 -0.91\%
(b) Depressing effect of oil shock on income also hit housing
(c) Exurbs saw biggest housing price declines and highest default rates

Housing Prices Declines Greatest at the Suburban Fringe Tampa MSA

Source: Cortright (2008)

Los Angeles

