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Abstract

Diagonal GARCH is shown to support identi�cation of the triangular system and is argued
as a higher moment analog to traditional exclusion restrictions used for determining suitable
instruments. The estimator for this result is ML in the case where a distribution for the GARCH
process is known and GMM otherwise. For the GMM estimator, an alternative weighting
matrix is proposed.

JEL Codes: C13, C32. Keywords: Triangular Systems, Endogeneity, Identi�cation, Het-
eroskedasticity, Generalized Method of Moments, GARCH.

Let Y1;t and Y2;t be observed endogenous variables,X
0
t a vector of predetermined variables that

can include lags of the endogenous variables, and �t =
�
�1;t �2;t

�0 unobserved errors. Specifying
�1o as the true value of �1 and similarly for other parameters, consider the following model

Y1;t = X
0

t�1o + Y2;to + �1;t (1)

Y2;t = X
0

t�2o + �2;t (2)

where the errors may be correlated and no exclusion restrictions are available for �1o. Identi�ca-
tion is shown if the errors follow a diagonal GARCH process. Works closely related to this one
include Klein and Vella (2006) and Lewbel (2004). A distinguishing feature relative to the latter
is that the covariance between errors is not assumed to be constant, while relative to the former,
conditional variances of the errors are not suf�cient for describing time-variation in the covariance.
Sentana and Fiorentini (2001) explore GARCH-based identi�cation of latent factor models. Their
results also depend chie�y upon a constant covariance and necessarily involve a distributional as-
sumption. Rigobon (2003) and Rigobon and Sack (2003) are examples of heteroskedasticity-based
identi�cation dependent upon discrete sets of independent variance regimes.

1Supervision, Regulation and Credit, 600 Atlantic Avenue, Boston, MA 02210 USA. Tel: (617)-973-3869 fax:
(617)-619-8869 email: todd.prono@bos.frb.org

The views expressed herein are solely those of the author and do not re�ect of�cial positions of the Federal Reserve
Bank of Boston or the Federal Reserve System. In addition, the usual disclaimer applies.
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Assumption A1: E [XtX
0
t] and E [XtY

0
t ] are �nite and identi�ed from the data. E [XtX

0
t] is

nonsingular.

De�ne St�1 = fXt; Xt�1; : : : ; �t�1; �t�2; : : :g. Consider the following de�nitions from Drost
and Nijman (1993).

De�nition D1 (Strong GARCH): �t = H
1=2
t �t; �t � i:i:d: D (0; 1), where D speci�es a

known distribution.

De�nition D2 (Semi-strong GARCH): E
�
�t j St�1

�
= 0; E

�
�t�

0
t j St�1

�
= Ht.

Under either de�nition, parameterize Ht as

Assumption A2:

Ht = C 00oC0o +
2P

k=1

A0ko�t�1�
0
t�1Ako +

2P
k=1

B0
koHt�1Bko (3)

where C0o =
�
c11;0o 0
c21;0o c22;0o

�
, A1o =

�
a11;1o 0
0 a22;1o

�
, A2o =

�
a11;2o 0
0 0

�
, B1o =

�
b11;1o 0
0 b22;1o

�
,

and B2o =
�
b11;2o 0
0 0

�
. The parameters c1o, c2o, a22;1o, a11;2o, b22;1o, and b11;2o are strictly positive.

A2 de�nes a �rst-order diagonal bivariate BEKK model as detailed in Proposition 2.3 of Engle
and Kroner (1995). This particular GARCH form is chosen because it establishes Ht as positive
de�nite under very mild conditions. Applying the vech (�) operator to (3) and simplifying the result
produces

ht = C + Aet�1 +Bht�1 (4)

where A and B are diagonal matrices whose nonzero elements are composite functions of the
parameters in Ako and Bko, respectively, and et�1 = vech

�
�t�1�

0
t�1
�
.2

Assumption A3: (i) The eigenvalues of A+B are less than one in modulus. (ii) Let aij be the
element in the ith row and jth column of the matrixA, and similarly de�ne bij . a33+b33 6= a22+b22.

(4) implies that et = ht + !t, where E
�
!t j St�1

�
= 0 and E

�
!t!

0
s j St�1

�
= 0 8 s 6= t. Let

et =
�
�1;t�2;t �22;t

�0. Similarly de�ne ht and !t as vectors of the second and third elements of ht
and !t, respectively.

Assumption A4: (i) E
�
!t!

0
t

�
= �! <1. (ii) Cov

�
et; et�1

�
is nonsingular if either a11;1o or

b11;1o is nonzero.

A3(i) de�nes ht (or, equivalently,Ht) as mean stationary according to Proposition 2.7 of Engle
and Kroner (1995). Given A4(i), !t is covariance stationary. A3(i) and A4(i) together determine et

2The vech (�) operator vertically stacks the elements on or below the principal diagonal of a square matrix into a
column vector.
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to be covariance stationary (see the Lemma and its proof in the Appendix), a condition that requires
�2;t to be fourth moment stationary. Under D2, A4(i) is primitive, while under D1, it is substantive.
For the latter, Theorem 3 of Hafner (2003) is necessary and suf�cient for A4(i) if D belongs to
the class of spherical distributions. Finally, note that if a11;1o = b11;1o = 0, then Cov

�
et; et�1

�
is

singular.

Proposition 1 Given D1 and A1�A3 for the model of (1) and (2), the structural parameters �1o,
�2o, and o are identi�ed.

Proof. �2o = E [XtX
0
t]
�1E

�
XtY2;t

�
. The reduced form residuals of (1) and (2) are

Ri;t = Yi;t �X 0
tE [XtX

0
t]
�1
E
�
XtYi;t

�
; i = 1; 2: (5)

Let Rt =
�
R1;t R2;t

�0
, and note that (5) relates structural errors to their reduced form counter-

parts as
�t = �

�1
o Rt (6)

where �o =
�
1 o
0 1

�
. Given (6) and the de�nition of et�1, the reduced form of (4) is

hr;t = Cr + Arrt�1 +Brhr;t�1:

The matrices Ar and Br are upper triangular. Components along their principal diagonal equal the
corresponding components of A and B, respectively (i.e., dg (Ar) = A and dg (Br) = B, where
dg (Z) forms a diagonal matrix from the elements along the principal diagonal of Z). Off diagonal
elements of Ar and Br are composite functions of the diagonal elements to A and B, respectively,
as well as o. From the elements of Ar and Br,

o =
a23;r + b23;r�

a33;r � b33;r
�
�
�
a22;r � b22;r

� : (7)

Given (7), �1o = E [XtX
0
t]
�1E

�
Xt

�
Y1;t � Y2;to

��
.

Proposition 2 Given D2 and A1�A4 for the model of (1) and (2), the structural parameters �1o,
�2o, and o are identi�ed.

Proof. If either a11;1o or b11;1o is nonzero as in A4(ii), then E
�
�1;t�2;t j St�1

�
is time-varying. In

this case, consider Cov
�
et; et�i

�
= Cov

�
ht; et�i

�
, noting that et is covariance stationary. For

i � 1, recursive substitution into ht reveals that

Cov
�
et; et�i

�
=
�
A+B

�i�1
Cov

�
et; et�1

�
(8)

where A is a 2 � 2 diagonal matrix formed from the elements a22 and a33 in A and similarly for
B. Given (6), the de�nition of et�1, and the relation between et�1 and et�1, the reduced form of
(8) for i = 2 is

Cov
�
rt; rt�2

�
=
�
Ar +Br

�
Cov

�
rt; rt�1

�
3



where the relationship between Ar and Ar is equivalent to that between A and A. An analogous
relationship exists between Br and Br. Identi�cation of Ar + Br follows from the nonsingularity
of Cov

�
et; et�1

�
, with o determined by (7).

Next, consider the case where a11;1o = b11;1o = 0. De�ne Zt�1 =
�
�22;t�1 � � � �22;t�l

�0 for
�nite l � 1. Since E

�
�1;t�2;t j St�1

�
= c21;0oc22;0o, it follows that

Cov(�1;t�2;t; Zt�1) = 0: (9)

From (6), �1;t = R1;t �R2;to and R2;t = �2;t. Substitution of these results into (9) produces

Cov(R1;t�2;t; Zt�1) = Cov(�22;t; Zt�1)o:

Let 
 = Cov(�22;t; Zt�1), and note that 
 6= 0 given A2. Then o is identi�ed as o =
(
0
)�1


0
Cov(R1;t�2;t; Zt�1).

Finally, in either case, �1o and �2o are identi�ed according to the Proof of Proposition 1.

Propositions 1 and 2 are second-moment analogs to exclusion restrictions for �1o. The diagonal
GARCH model in (3) restricts each hij;t in Ht to be a function of only past values of itself and of
�i;t�j;t. Identi�cation depends on these types of restrictions. If, instead, each hij;t depends on past
values of hij;t and �i;t�j;t 8 i; j = 1; 2 such that each hij;t depends on six covariates as opposed to
two in the diagonal case, then the number of reduced form parameters in Ar and Br is less than the
total number of structural parameters, and o remains unidenti�ed.
Let Hr;t be the reduced form of Ht. In general, if Ht is diagonal (as it is in A2), Hr;t will

not be. Proposition 2.1 of Iglesias and Phillips (2004) demonstrates this result. Departures from
diagonality in Hr;t are precisely what identify o. The numerator of (7), for example, is deter-
mined by off-diagonal elements. Suppose that a33 = a22 and b33 = b22 such that A3(ii) is vio-
lated. Then Ar = A, Br = B, and o is not identi�ed from Ar or Brbecause it does not appear
in either. This example represents a special case where diagonality in E

�
�1;t�2;t j St�1

�
passes

through to E
�
R1;t�2;t j St�1

�
. A3(ii), therefore, is necessary to preserve the off-diagonal elements

in E
�
R1;t�2;t j St�1

�
responsible for identi�cation.

Owing to D2, Proposition 2 is a more general result than Proposition 1. The cost of this gener-
ality is paid in terms of stationary conditions for higher moments. Cragg (1997) and Lewbel (1997)
require similar conditions for identi�cation of the errors-in-variables model without distributional
assumptions. If a11;1o = b11;1o = 0, Proposition 2 is a special case of Theorem 1 in Lewbel (2004).
De�ne � = f�1; �2; ; C0; Ak; Bkg and � to be the set of all possible values for �. In D1,

specify D = N , the normal distribution. Let Lt be the log likelihood for observation t and L the

joint log likelihood. Then L =
TP
t=1

Lt and

Lt = �
T

2
ln (2�)� 1

2
ln
��Hr;t

��� 1
2
R

0

tH
�1
r;t Rt:

Proposition 1 together with Theorems 1�3 of Lumsdaine (1996) can be used to establish

b� = argmax
�2�

L

4



as a consistent and asymptotically normal estimator. Standard regularity conditions impose com-
pactness on �. This condition needs to be reconciled with A3(ii). Suppose ja22j � a33 and
jb22j � b33. A possible reconciliation is to de�ne � such that every

�
a22
a33
;
b22
b33

�
2 � 2 � is

exclusive of an open neighborhood of one.
Let � = A + B and �e =

�
�12 �22

�0, where �12 = c21;0c22;0
1��11

and �22 =
c222;0
1��22

. De�ne

Z =

�
�11o 0
0 �22o

�
, where

�2iio = E
h�
�i;t�2;t � �i2

�2i
; i = 1; 2:

In addition, let  = f�1; �2; ; C; �g and 	 be the set of all possible values for  . Construct
the following vector functions

U1
�
 ; Yt; St�1

�
= Xt 
 �t

U2
�
 ; Yt; St�1

�
= et � �e

U3
�
 ; Yt; St�1

�
= vec

h
(et � �e)

�
et�2 � �e

�0 � � (et � �e)
�
et�1 � �e

�0i
and stack them into a single vector Ut.3 E

�
U2;t

�
= 0 grants that �e = E [et]. Therefore,E [Ut] = 0

is equivalent to E
�
Xt�1;t

�
= 0 and E

�
Xt�2;t

�
= 0 from (1) and (2) as well as Cov

�
et; et�2

�
=�

A+B
�
Cov

�
et; et�1

�
(see (8) with i = 2). From Proposition 2, the only  2 	 that satis�es

E [Ut] = 0 is  =  o.

Let g = 1
T

TP
t=1

Ut and W be positive de�nite. Then Proposition 2 and Theorem 2.6 of Newey and

McFadden (1994) can be used to establish

b = argmin
 2	

g0Wg

as a consistent estimator.4 Once again, 	 needs to be compact. Reconciling this condition with
A3(ii) follows a parallel argument to the one given above for �. Namely, assume j�11j � �22, and
de�ne 	 such that every �11

�22
2  2 	 is exclusive of an open neighborhood of one.

SupposeW is a consistent estimator ofWo = E
h
U
�
 o; Yt; St�1

�
U
�
 o; Yt; St�1

�0i. Then
asymptotic normality of b follows from Theorem 3.4 of Newey and McFadden (1994). A nec-
essary condition for this theorem to hold, however, is that �2;t be eighth moment stationary. If
stationary higher moment conditions beyond those required under Proposition 2 prove overly re-
strictive, consistency of b follows if W = I , where I is the identity matrix, in which case b is
the product of single-step GMM. Standard errors can be obtained by employing the nonoverlap-
ping block bootstrap of Carlstein (1986), making sure to recenter the bootstrapped version of the

3The matrix operator 
 is the kronecker product. The vec (�) operator stacks the columns of an (m� n) matrix
into an (mn� 1) vector.

4b is the GMM estimator of Hansen (1982).
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moment conditions relative to the population version as in Hall and Horowitz (1996).
SupposeXt is a k�1 vector, and de�ne Ij as the j� j identity matrix. Let e� ii be a preliminary

estimate of � iio. In the case of single-step GMM estimation of b , an alternative choice forW is

W
� eZ� =

2664
I2k�2k � � � 0
... I2�2

...

0 � � �
� eZ 
 eZ��1

3775 :
The weights

� eZ 
 eZ��1 impact the moments that de�ne the autocovariances of et, transform-
ing these autocovariances into autocorrelations. The choice of W

� eZ� over I is motivated by
the results of a Monte Carlo study (see the �rst row of Table 1) showing improved �nite sample
properties of b based on the former.
West (2002) demonstrates ef�ciency gains from using higher order lag terms to estimate AR

processes that also display GARCH. Given (8), higher order lagged moments are available for
inclusion in g by appending

U3+q
�
 ; Yt; St�1

�
= vec

h
(et � �e)

�
et�q � �e

�0 � �q�1 (et � �e)
�
et�1 � �e

�0i
; q � 3

to Ut. W
� eZ� then needs to be rede�ned to include (q � 2)� as many weighting matrices� eZ 
 eZ��1 along the diagonal. The same Monte Carlo study mentioned above veri�es reduced

variability in b as q grows (see rows two and three of Table 1). However, this study also shows that
the bias in b is increasing in q. Newey and Smith (2001) demonstrate that the GMM estimator can
have large biases in the case of IV models with many instruments. Their theoretical result together
with the Monte Carlo evidence presented here further supports the analogy between identi�cation
through GARCH and traditional exclusion restrictions. Existence of this bias advocates a modest
value for q.

6



Appendix

Lemma 3 Given A3(i) and A4(i), et is covariance stationary.

Proof. From (4),
ht = C + Aet�1 +Bht�1 (10)

where A is a 2� 2 diagonal matrix formed from the elements a22 and a33 in A and similarly for B.
Recursive substitution into (10) produces

ht =
1P
i=1

B
i�1 �

C + Aet�i
�
: (11)

Following the steps outlined in the proof to Proposition 2.7 of Engle and Kroner (1995), (11) can
be used to show that

Et��et =
h
I +

�
A+B

�
+ � � �+

�
A+B

���2i
C +

�
A+B

���1 1P
i=1

B
i�1 �

C + Aet�i��+1
�

where Et�� is the expectations operator conditional on the information set St�� . For a square
matrix Z, it is well known that Z� ! 0 as � !1 if and only if the eigenvalues of Z are less than
one in modulus. This same condition grants (I + Z + � � �+ Z��1) ! (I � Z)�1 as � ! 1 for
the appropriately sized identity matrix I . Given A3(i), therefore, Et��et

p!
�
I �

�
A+B

���1
C

(as � !1).
Since (4) implies that et = ht + !t, where E

�
!t j St�1

�
= 0, and given A4(i),

E
h
ete

0

t

i
= E

h
hth

0

t

i
+ �!:

Let �e =
�
I �

�
A+B

���1
C.

E
h
hth

0

t

i
= � + AE

h
ht�1h

0

t�1

i
A
0
+ A�!A

0
+ AE

h
ht�1h

0

t�1

i
B

0
(12)

+BE
h
ht�1h

0

t�1

i
A
0
+BE

h
ht�1h

0

t�1

i
B

0

where � = CC
0
+
�
A+B

�
�eC

0
+ C�

0
e

�
A+B

�0
. Applying the vec (�) operator to (12) and

simplifying yields

vec
�
E
h
hth

0

t

i�
= � + (D) vec

�
E
h
ht�1h

0

t�1

i�
+
�
A
 A

�
vec (�!)

= [I +D]
�
� +

�
A
 A

�
vec (�!)

�
+
�
D2
�
vec

�
E
h
ht�2h

0

t�2

i�
=

�
I +D +D2

� �
� +

�
A
 A

�
vec (�!)

�
+
�
D3
�
vec

�
E
h
ht�3h

0

t�3

i�
= : : :

=
�
I +D + � � �+D��1� �� + �A
 A

�
vec (�!)

�
+ (D� ) vec

�
E
h
ht��h

0

t��

i�
7



whereD =
�
A+B

�


�
A+B

�
. Given A3(i), the eigenvalues ofD are less than one in modulus,

granting that vec
�
E
h
hth

0

t

i�
converges to [I �D]�1

�
� +

�
A
 A

�
vec (�!)

�
as � !1.

Note that
Cov

�
et; et��

�
= E

h
ete

0

t��

i
� �e�

0

e

Consider the case where � = 1.

E
h
ete

0

t�1 j St�1
i
= Ce

0

t�1 + Aet�1e
0

t�1 +Bht�1e
0

t�1:

By iterated expectations,

E
h
ete

0

t�1

i
= C�

0

e +
�
A+B

�
�
h
+ A�!

and, as a result,
Cov

�
et; et�1

�
=
�
C � �e

�
�
0

e +
�
A+B

�
�
h
+ A�!

where �
h
= E

h
hth

0

t

i
. Next, consider the case where � � 2.

E
�
ht j St��

�
= E

�
C + Aet�1 +Bht�1 j St��

�
= C +

�
A+B

�
E
�
ht�1 j St��

�
=

�
I +

�
A+B

��
C +

�
A+B

�2
E
�
ht�2 j St��

�
= : : :

=
h
I +

�
A+B

�
+ : : :+

�
A+B

���1i
C +

�
A+B

���1 �
Aet�� +Bht��

�
=

�
I �

�
A+B

���
�e +

�
A+B

���1 �
Aet�� +Bht��

�
:

By iterated expectations,

E
h
ete

0

t��

i
= E

h
E
h
ete

0

t�� j St��
ii

= E
h
E
�
ht j St��

�
e
0

t��

i
=

�
I �

�
A+B

���
�e�

0

e +
�
A+B

���1 h�
A+B

�
E
h
ht��h

0

t��

i
+ AE

h
!t��!

0

t��

ii
:

As a result,
Cov

�
et; et��

�
=
�
A+B

���1 h�
A+B

� �
�
h
� �e�

0

e

�
+ A�!

i
(13)

which converges to zero as � !1, since
�
A+B

���1 ! 0 (as � !1). Given (13), note that for
0 � i � � � 1,

Cov
�
et; et��

�
=
�
A+B

�i
Cov

�
et; et��+i

�
:
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TABLE 1

Wght. Med. Dec.
Lags Matrix Bias MDAE Range SD
2 I 0.000 0.117 4.344 1.126

W
� eZ� 0.000 0.093 1.167 1.223

8 W
� eZ� 0.118 0.136 0.414 0.167

16 W
� eZ� 0.143 0.147 0.330 0.130

Notes: Consider (1) and (2) where �1o = �2o = 0 and o = 1. Parameterize the
errors according to D1 where D = N , the normal distribution. Let a11;1o = 0:13,
a22;1o = 0:32, a11;2o = 0:18, b11;1o = 0:89, b22;1o = 0:89, and b11;2o = 0:32. Select
values for C0o such that V ar

�
�1;t
�
= V ar

�
�1;t
�
= 1 and Cov

�
�1;t; �2;t

�
= 0:20.

Monte Carlo studies were conducted across 5000 trials for T = 1260 observations.
Results for b are shown. Med. Bias is the median bias of b relative to the true value.
MDAE is the median absolute error of b relative to the true value. Dec. Range is the
decile range, de�ned as the difference between the 0:10 and 0:90 quantiles of b. SD
is the standard deviation of b. Robust measures of central tendency and dispersion are
reported because of concerns over the existence of moments. The standard deviation,
while not a robust measure, is also reported to give an indication of outliers.

11


	0804 cover page.pdf
	Gbased_Identification_Note_v2.pdf

