Discussion of "Sticky Leverage" by Joao Gomes, Urban Jermann and Lukas Schmid

Jianjun Miao ${ }^{1}$
${ }^{1}$ Boston University

September 2013

Summary

- Provide a tractable DSGE model with dynamic capital structure choice and finite maturity nominal debt

Main Results

- When inflation is exogenous:
- Unanticipated changes in inflation have real effects, even without sticky prices or wages
- When debt is long-lived, there is debt overhang \Rightarrow reduce investment
- Leverage is a slow-moving state variable \Rightarrow persistence and propagation
- A standard Taylor rule helps stabilize the economy
- In response to a negative productivity or wealth shock, CB raises inflation \Rightarrow mitigate debt overhang

Related Literature I

- Large literature on one period nominal debt
- Deflation raises the real burden of debt and worsens economic activity (Fisher (1933))
- Debt overhang reduces investment (Myers (1977))
- Miao and Wang (2010): RBC model (propogation)
- Bhamra, Fisher and Kuehn (2011)
- Infinite maturity nominal debt
- No investment
- Interest rate peg vs inflation targeting
- The main difference is that GJS incorporate finite maturity and investment

Related Literature II

- Continuous time: Leland and Toft (1996, JF), Leland (1998, JF), Hackbarth, Miao, and Morellec (2006, JFE)
- Discrete time: Philippon (2009, QJE)
- Probabilitistic structure
- Chatterjee and Eyigungor (2012, AER): sovereign debt
- Miao and Wang (2010): real DSGE model

Finite Maturity Debt Contracts: Leland (1998)

- Initially, the firm issues debt with principal P and a constant coupon C forever.
- At each t, a fraction $e^{-m t}$ of this debt remains outstanding, with principal $e^{-m t} P$ and coupon $e^{-m t} C$
- Continuously retire outstanding debt principal at the rate $m e^{-m t}$
- The average maturity is $\int_{0}^{\infty} t m e^{-m t} d t=1 / m$
- Retired debt is replaced by the issuance of new debt with identical coupon, principal, and seniority.
- Any finite-maturity debt policy is completely characterized by (C, P, m)

Valuation: Leland (1998), HMM (2006)

- Cash flow $\left(x_{t}\right)$ follow a GBM.
- Let $D^{0}(x, t)$ denote the time t value of debt issued at time zero

$$
\begin{aligned}
r D^{0}(x, t)= & e^{-m t}(m P+C)+D_{t}^{0}(x, t) \\
& +\mu x D_{x}^{0}(x, t)+\frac{\sigma^{2} x^{2}}{2} D_{x x}^{0}(x, t)
\end{aligned}
$$

- Let $D(x)=e^{m t} D^{0}(x, t)$ denote the total value of outstanding debt at any time t

$$
(r+m) D(x)=C+m P+\mu x D_{x}(x)+\frac{\sigma^{2} x^{2}}{2} D_{x x}(x)
$$

- We can see that $D(x ; P)$ does not depend on time

Finite Maturity Debt Contracts: Discrete Time

- A finite maturity debt contract $\left(c, b_{t}, \lambda\right)$ where b_{t} is total principal at date t
- One unit debt pays coupon c
- A fraction λ is retired and then issue new debt $b_{t+1}-(1-\lambda) b_{t}$

$t=0$	$t=1$	$t=2$	$t=3$
b_{1}	$(c+\lambda) b_{1}$	$(1-\lambda)(c+\lambda) b_{1}$	$(1-\lambda)^{2}(c+\lambda) b_{1}$
	$b_{2}-(1-\lambda) b_{1}$	$(c+\lambda)\left[b_{2}-(1-\lambda) b_{1}\right]$	$(1-\lambda)(c+\lambda)\left[b_{2}-(1-\lambda) b_{1}\right]$
		$b_{3}-(1-\lambda) b_{2}$	$(c+\lambda)\left[b_{3}-(1-\lambda) b_{2}\right]$
b_{1}	b_{2}	b_{3}	$b_{4}-(1-\lambda) b_{3}$
		b_{4}	

- Cash flow for any debt b_{t} is given by

$$
\begin{array}{cccc}
t & t+1 & t+2 & t+3 \\
b_{t+1} & (c+\lambda) b_{t+1} & (1-\lambda)(c+\lambda) b_{t+1} & (1-\lambda)^{2}(c+\lambda) b_{t+1}
\end{array}
$$

Valuation: Discrete Time

- Unit debt price p_{t}
- Recursive valuation

$$
\begin{aligned}
p_{t} b_{t+1}= & E M_{t, t+1}\left[(c+\lambda) b_{t+1}+(1-\lambda) p_{t+1} b_{t+1}\right] \\
& +E M_{t, t+1}(\text { recovery value })
\end{aligned}
$$

Specific comments

- Taylor rule

$$
\ln \left(r_{t} / \bar{r}\right)=\rho_{r} \ln \left(r_{t-1} / \bar{r}\right)+\left(1-\rho_{r}\right)\left[\rho_{\mu} \ln \left(\mu_{t} / \bar{\mu}\right)+\rho_{y} \ln \left(Y_{t} / \bar{Y}\right)\right]
$$

- Compare to DNK models: $\zeta_{t} \uparrow \Longrightarrow r \uparrow, Y \downarrow$, (inflation) $\mu \downarrow$, $r r \uparrow$
- A monetary policy shock $\zeta_{t} \uparrow \Longrightarrow \mu \downarrow$ (?), Default \uparrow, Debt \uparrow, $I \downarrow, Y \downarrow, C \uparrow, N \downarrow, r_{f} \downarrow$
- A negative TFP shock $\Longrightarrow Y \downarrow, \mu \uparrow(?)$, Default $\downarrow, I \uparrow$, $C \downarrow(?), N \downarrow, r_{f} \uparrow$
- A negative wealth shock $(\delta \downarrow) \Longrightarrow Y \uparrow, C \downarrow, I \uparrow, N \uparrow$, $\mu \uparrow, r \uparrow$
- What is the intuition? Log-linear analysis
- Finacial shocks?

Specific comments

- Numerical method?
- Calibrate c ?
- Which parameters are chosen to match what targets?
- What empirical facts to explain?

Conclusion

- Provide a tractable DSGE model with finite maturity nominal debts
- Related Literature should be more fairly discussed
- More intuition is needed for results related to impulse responses
- Exposition can be improved (proofs, typos, details...)

