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Abstract

An asset pricing restriction that permits inference about the familiar CAPM despite
the market return being unobservable is generalized to allow an observable proxy of the
market return to be endogenously determined along with the individual asset returns the
proxy is supposed to price. Making this allowance reduces the ef�ciency of the proxy
relative to the market return by upwards of 20%. Such a reduction is capable of reversing
an inference about the validity of the CAPM theory under the aforementioned pricing
restriction. Rendering this pricing restriction feasible empirically is a new method for
estimating triangular systems given GARCH errors.
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1 Introduction
The familiar capital asset pricing model (CAPM) pioneered by Sharpe(1964) and Lintner

(1965) proposes a linear relation between expected return and the covariance between an
asset's return and the return on the wealth or market portfolio, where this covariance measures
the asset's systematic risk. Since the market portfolio includes all stores of value (traded or
not), its return is unobservable. Empirical investigations of the CAPM theory, therefore, rely
on observable proxies to the market return.3 Clouding the results of these investigations is
the complication that an empirical rejection may signal either a failure of the theory or some
misspeci�cation of the proxy. Recognizing this complication led Roll (1977) to conclude that
the theory "is not testable unless the exact composition of the true market portfolio is known
and used in the tests" (p. 130), since the linear relation between risk and return is equivalent
to mean-variance ef�ciency of the market portfolio. Following Roll's critique, measures of
relative ef�ciency were incorporated into tests of the linear risk return relation to account for
the location of a chosen proxy in mean-variance space. Kandel and Stambaugh (1987) and
Shanken (1987) developed such tests that rely upon a prior belief about the correlation of
the proxy with the market portfolio, where this correlation is the relative ef�ciency measure.
Shanken (1987) describes the intuition behind his approach as follows: "if the statistical
evidence of the proxy's inef�ciency is suf�ciently strong, then the inef�ciency of the true
market return may indeed be correctly inferred and the CAPM rejected" (p. 92). In other
words, if linearity between risk and return is only supported by a low correlation between the
proxy and the true market portfolio while the prior for that correlation is high (Roll (1977)
argues this correlation to be upwards of 0.90), then this �nding is interpreted as evidence
against the theory.
This paper further explores the effects of proxy portfolios on a test of the CAPM the-

ory by allowing a given proxy to be endogenously determined along with the asset returns
it is supposed to price. Since the tests of both Kandel and Stambaugh (1987) and Shanken
(1987) reject the hypothesis that the chosen proxy is the market return given that the CAPM
is true, the implication is that the proxy is relatively less ef�cient and, hence, located some-
where inside the minimum-variance boundary that includes the market return.4 A result of
this implication is that the proxy need not be orthogonal to shocks affecting other asset re-
turns. Unanticipated changes to the returns on either nontraded assets or human capital could
produce a nonzero relationship.5 The question addressed in this paper, therefore, is to what
extent does endogeneity impact a proxy's inef�ciency, and can this impact be material enough

3As early examples, see Black, Jensen, and Scholes (1972), and Fama and MacBeth (1973).
4Works by Gibbons, Ross, and Shanken (1989), MacKinlay and Richardson (1991) and Zhou (1991) also

reject the ef�ciency of various proxies.
5Regarding the latter, Dittmar (2002) recognizes the importance of including human capital within the mar-

ket portfolio when testing a pricing kernel consistent with a four-moment CAPM.
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to alter the conclusion of a CAPM test based upon the degree of that inef�ciency? The an-
swer is that endogeneity can reduce the relative ef�ciency of a proxy by upwards of 20% and
that such a reduction can signi�cantly alter the conclusion of a CAPM test conducted in the
spirit of Shanken (1987). Conducting this investigation requires an empirical framework that
delivers consistent estimates of both the sensitivities of asset returns to the proxy as well as
the resulting pricing errors. The development of this framework contributes to the literature
on identifying and estimating triangular systems. An overview is provided below.
Consider the following model:

Y1;t = X
0

t�1 + Y2;t + �1;t; (1)

Y2;t = X
0

t�2 + �2;t: (2)

Xt is a vector of predetermined covariates that can include lags of Yt =
�
Y1;t Y2;t

�0. Let �t =�
�1;t �2;t

�0 be a vector of innovations, and de�ne St�1 to be the sigma �eld generated by Xt

and its past values, as well as past values of �t. Assume E
�
�t j St�1

�
= 0. This assumption

identi�es equation (2) but, of course, is insuf�cient for identifying equation (1). Typically,
identi�cation of equation (1) follows by imposing equality constraints on coef�cients of the
mean equations�for example, by setting some of the elements in �1 to zero or, equivalently,
by assuming the availability of instruments. This paper introduces a different approach to
identifying equation (1) that restricts the covariances of the errors' second moments.
The reduced form of equation (1) is

Y1;t = X
0

t�1 +R1;t;

where �1 = �1+�2 and R1;t = �2;t+ �1;t. If E
�
�t�

0
t j St�1

�
= Ht, whereHt follows a di-

agonal bivariate GARCH process, then the reduced-form innovations Rt =
�
R1;t �2;t

�0also
follow a bivariate GARCH process, but one where the conditional covariance between R1;t
and �2;t depends not only on lags ofR1;t�2;t but also on lags of �22;t.6 The dynamic covariances
of R1;t�2;t and �22;t identify . Existence of these auto- and cross-covariances requires �2;t to
be fourth moment stationary. In order to guarantee that Ht be positive de�nite, it is parame-
terized by the BEKK representation of a diagonal bivariate GARCH model as proposed by
Engle and Kroner (1995).
The key identifying assumption in this paper is the diagonal bivariate GARCH process

for �t. Apparent in the discussion above, while GARCH passes from the structural innova-
tions to the reduced form, diagonality does not, and it is the deviations from diagonality that
produce identi�cation. Bollerslev, Engle, and Wooldridge (1988), in their study of a CAPM

6The conditional covariance of the structural innovations �t only depends on lags of �1;t�2;t.
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with time-varying covariances, �nd the conditional covariance matrix of asset returns to be
strongly autoregressive and well described by a diagonal GARCH model. They further note
that any "correctly speci�ed intertemporal asset pricing model ought to take this observed
heteroskedastic nature of asset returns into account" (p. 123). This paper does precisely
that and goes a step further by using that heteroskedastic nature to identify the loadings on a
potentially endogenous market proxy.
The role second-moment restrictions play in identi�cation has a long and established his-

tory. Early works by Philip Wright (1928) and Sewall Wright (1921) recognize that increases
in the variance reduce the bias inherent in simultaneous equations estimated by OLS. More
recent contributions include Klein and Vella (2003), who show that a speci�c semiparametric
functional form of multiplicative heteroskedasticity identi�es the triangular system. Works
by Sentana and Fiorentini (2001), and Lewbel (2004) discuss identi�cation methods that re-
quire a constant conditional covariance between the model's structural errors. This paper's
methodology generalizes these works by allowing the covariance to display ARMA-style
properties. In addition, identi�cation in this paper does not require a speci�c distributional
assumption for �t j St�1, as in Sentana and Fiorentini (2001).
The remainder of this paper is organized as follows. Section 2 generalizes the pricing re-

strictions developed by Shanken (1987) to allow for an endogenous proxy. Section 3 develops
the assumptions required for GARCH-based identi�cation of triangular systems. Section 4
discusses estimation of this identi�cation result, and Section 5 conducts a Monte Carlo study
of the proposed estimator. Section 6 reviews the methodology used to test the pricing restric-
tion of Section 2. The results from applying this methodology are presented in section 7.
Section 8 concludes.

2 Pricing Restriction

For expository convenience, all time subscripts are suppressed. In order to facilitate
comparison, variable labels follow Shanken (1987) as closely as possible. Assume there
exists an observable risk-free rate. Consider the following model:

R = E [R j S] + �P + e; E [R j S] = BX; (3)

Rp = E
�
Rp j S

�
+ P; E

�
Rp j S

�
= b

0

pX: (4)

R is anN -vector of asset returns, andRp is a scalar proxy to the market return. Assume these
N+1 returns are nonredundant. X is aK-vector of forecasting instruments for asset returns.7

7As might be expected, the literature on predicting asset returns is long. Potential candidates for X include
the dividend yield as argued by Fama and French (1988) and the term premia in Treasury bill returns investigated
by Campbell (1987).
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Let E =
�
e0 P

�0 be a vector of innovations, and de�ne S to be the sigma �eld generated
by X and its past values as well as past values of E. Assume E [P j S] = E [e j S] =
0. Equations (3) and (4) divide all asset returns (including the proxy) into predictable and
unpredictable components.8 The unpredictable component of the proxy is the single factor
pricing asset returns. Equation (3) is a vector statement of equation (1). If E [eP ] 6= 0, then
equations (3) and (4) specify a triangular system for asset returns.
Let Rm be the return on some unobservable economic aggregate (the de�nition of which

will be made precise below) with the following speci�cation:

Rm = E [Rm j S] +m; E [Rm j S] = b
0

mX; (5)

which also allows expected returns to be time-varying. Assume E [m j S] = 0. Consider the
linear regression ofm on P :

m = bP + em: (6)

Lemma 1 of Shanken (1987) applies immediately to equations (3) and (6) and is summarized
for convenience.

Lemma 1 (Shanken): Consider equations (3) and (6) and their accompanying assumptions.
Then,

cov (e; em)
0��1e cov (e; em) � �2 (m) (1� �2); (7)

where �e is the N � N covariance matrix of e, �2 (m) the variance of m, and � the
correlation between m and P . Equation (7) holds as an equality if and only if em is
an exact linear combination of e.

Proof. See the proof of Lemma 1 in Shanken (1987). The fact that security returns are
divided into predictable and unpredictable components bears no effect on the result.

Lemma 1 (Shanken) makes no explicit use ofRm as an unobservable economic aggregate.
According to Shanken (1987), "the lemma is just the statement that the explained variance in
the regression of em on e is bounded above by the the total variance of em; i.e., the r-squared
in this regression is at most one" (p. 93). Lemma 1 (Shanken) together with Lemma 1 in the
Appendix is used to support the following pricing restriction, which generalizes the results
of Propositions 1 and 2 in Shanken (1987) to (i) allow expected returns to be time-varying
and (ii) consider P as an endogenous regressor in equation (3).

Corollary 1: Assume
E [R j S] = r1N + cov (R; m) (8)

8Ferson (1990) considers a multi-factor version of equations (3) and (4).
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and
E
�
Rp j S

�
= r + cov

�
Rp; m

�
; (9)

where 1N is an N -vector of ones, and r is the observable risk free rate. Let �2 (P ) be
the variance of P , and de�ne

�2p =

�
E
�
Rp j S

�
� r
�2

�2 (P )
: (10)

Consider
� = cov (e; P )

�
1

�2 (P )

�
: (11)

Then,
d0��1e d � �2p(�

�2 � 1); (12)

where
d � E [R j S]� r1N � (� + �)

�
E
�
Rp j S

�
� r
�
: (13)

The pricing restriction in Corollary 1 equates conditional expected excess returns with the
covariance between asset returns and innovations to an unobservable economic aggregate.
This equality is assumed for both asset returns and the chosen proxy return. Suppose innova-
tions to the economic aggregate are proportional tom�, innovations to the true market return
R�m, with a constant of proportionality equal to (E [R�m j S]� r) =�2 (m�).9 Then equation
(8) states the CAPM in terms of conditional expected excess returns, and � (m) = �m� , where

�m� =
E [R�m j S]� r

� (m�)
:

The equality between � (m) and �m� is important because it links � to the market return. In
particular,

� =
�p

� (m)
=

�p
�m�

;

from the proof to Corollary 1.10 This link also interprets � as a measure of relative ef�ciency
for the proxy in the familiar mean-variance space of portfolio returns, if expected returns
are not considered to be time-varying; i.e., the conditioning information in S does not fore-
cast asset returns.11 Under this case, equation (8) states the CAPM in unconditional terms

9Assume E [R�m j S] = (b�m)
0
X .

10Given this equality, � is strictly positive.
11If returns are time-invariant, then both conditional and unconditional expected returns are equal.
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following the same proportionality argument stated above. Since �m� is the Sharpe perfor-
mance measure for the market return (an ef�cient portfolio), � describes the ef�ciency of the
proxy relative to the market. If � = 1, then the proxy is the market, and the pricing errors in
equation (12) are zero. If � < 1, then the proxy is located somewhere inside the minimum-
variance boundary that includes the market return, and the distance between the proxy and
the market bounds the pricing errors from above. The larger are those errors the smaller is �,
meaning the farther away from the market is the proxy in mean-variance space.
Allowing P to be endogenous in equation (3) decomposes the proxy beta (where beta

is afforded its standard de�nition of cov (R; P )
�

1
�2(P )

�
) into two components: � and �.

� measures the sensitivity of asset returns to movements in the proxy (or innovations to
the proxy), while � measures the relationship between asset returns and components of the
market portfolio that are omitted from the proxy. If the proxy is the market (meaning � = 1),
then � = 0 because the market return is ef�cient; i.e., fully diversi�ed. If the proxy differs
from the market (i.e., � < 1), then � could be nonzero. For two proxies Rp(1) and Rp(2),
where k�1k > k�2k, relative diversi�cation implies that �1 < �2. In this case, Rp(1) either
omits fewer components than Rp(2), or the components omitted from Rp(2) bear less of a
relationship to the assets being priced.12
The errors from equation (13) are similar in form to those derived by Diacogiannis and

Feldman (2006), who also modify the theoretical CAPM relation for inef�cient portfolios.
A key difference (to be fully discussed in Section 6) is that all of the parameters in equation
(13) can be estimated directly from observable data.

3 Identi�cation
Consider the triangular system

Y1;t = X
0

t�10 + Y2;t0 + �1;t; (14)

and
Y2;t = X

0

t�20 + �2;t: (15)

Let �10 refer to the true value of �1 and similarly for all other parameters. Assume that
the regressors in Xt are ordinary random variables with �nite second moments. This section
provides identi�cation conditions that require neither the errors �1;t and �2;t to be uncorrelated
nor equality restrictions to be imposed on �10.

12This rationale is not intended to be exhaustive but, rather, consistent with the motivation for why proxies
should be considered endogenous.
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Assumption A1: E [XtX
0
t] and E [XtY

0
t ] are �nite and identi�ed from the data. E [XtX

0
t] is

nonsingular.

Assumption A2: �t =
�
�1;t �2;t

�0
, and St�1 = fXt; : : : ; Xt�p; �t�1; : : : ; �t�pg for some

�nite p. E
�
�t j St�1

�
= 0 and E

�
�t�

0
t j St�1

�
= Ht, where

Ht = C 00C0 +
2P

k=1

A0k0�t�1�
0
t�1Ak0 +

2P
k=1

B0
k0Ht�1Bk0; (16)

C0 =

�
c10 0
c20 c30

�
, A10 =

�
a11;10 0
0 a22;10

�
, A20 =

�
a11;20 0
0 0

�
, B10 =

�
b11;10 0
0 b22;10

�
,

and B20 =
�
b11;20 0
0 0

�
. The parameters c10, c20, a22;10, a11;20, b22;10, and b11;20 are strictly

positive.

A1 and A2 identify the structural form of equation (15) and the reduced form of equation
(14). A2 speci�es a bivariate analog to the semi-strong GARCH model de�ned by Drost
and Nijman (1993). Equation (16) de�nes a �rst-order diagonal bivariate BEKK model as
detailed in Proposition 2.3 of Engle and Kroner (1995). This particular GARCH form is
chosen because it establishes Ht as positive de�nite under very mild conditions. Let ht =�
h12;t h22;t

�0 and et = � �1;t�2;t �22;t
�0. Given equation (16),

ht = C0 + A0et�1 +B0ht�1; (17)

where C0 =
�
c20c30 c230

�0,
A0 =

�
a11;10a22;10 0

0 a222;10

�
; B0 =

�
b11;10b22;10 0

0 b222;10

�
: (18)

Equation (17) implies that
et = ht + wt; (19)

where E
�
wt j St�1

�
= 0 by construction.

Assumption A3: cov
�
et; et�1

�
is nonsingular.

The diagonal GARCH speci�cation of A2 and the nonsingularity condition of A3 are
both central to identi�cation. A3 establishes the existence of the auto- and cross-covariances
forR1;t�2;t and �22;t mentioned in the Introduction and is similar in scope to Assumption A3 of
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Lewbel (2004). Under A3, the errors �2;t are fourth moment stationary (see Condition 3 be-
low). Weis (1986), in demonstrating consistency and asymptotic normality of the maximum
likelihood estimator for univariate ARCH models, requires this same condition.
A3 is a substantive assumption that holds if and only if the following conditions are

satis�ed.

Condition C1: The eigenvalues of A0 +B0 are less less than one in modulus.

Condition C2:
��a11;10�� < 1 and ��b11;10�� < 1.

Condition C3: E
�
wtw

0
t

�
= � <1.

Condition C4: a11;10 and b11;10 are nonzero.

C1�C3 are necessary for et to be covariance stationary (see the statement and proof of
Lemma 4 in the Appendix). C1 is similar to Proposition 2.7 of Engle and Kroner (1995)
and determines ht to be mean stationary. C2 is necessary because h11;t is not considered in
equation (17). If ht were rede�ned as ht =

�
h11;t h12;t h22;t

�0 and the de�nitions of et,
C0, A0 and B0 were adjusted accordingly, then C2 would be unnecessary given C1. C3 is
a substantive condition that speci�es the existence of a �nite fourth moment for �2;t. This
condition cannot be made more primitive unless additional structure is provided around the
innovations wt. For example, suppose �t follows the strong GARCH model of Drost and
Nijman (1993) so that

�t = H
1=2
t Vt; (20)

where Vt � iid D (0; I2) for some distributionD, and I2 is the 2�2 identity matrix. Then, C3
holds if and only if ca422;10+2a222;10b222;10+ b422;10 < 1, where c = E

�
V 4
2;t

�
. If Vt � N (0; I2),

then c = 3 and the inequality restriction is provided by Theorem 2 in Bollerslev (1986).
Finally, C4 ensures cov

�
et; et�1

�
to be of full rank.

From equation (17),

h12;t = (c20c30) +
�
a11;10a22;10

�
�1;t�1�2;t�1 +

�
b11;10b22;10

�
h12;t�1: (21)

C4 echoes the theme of Sentana and Fiorentini (2001), Rigobon (2002), and Lewbel (2004)
in the sense that identi�cation of the triangular system relates to a property of the conditional
covariance between the error terms. Unlike these authors, however, who demonstrate this
property to be time-invariance, C4 takes a different tack and links identi�cation explicitly to
time-variation. The special case of a constant conditional covariance is treated later in this
section.
Let �120 = a11;10a22;10 + b11;10b22;10 and �220 = a222;10 + b222;10.
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Assumption A4: �120 6= �220.

A4 differentiates the structural parameters governing h12;t from the structural parameters
governing h22;t. Given A2 and A3, �1 < �120 < 1 and 0 < �220 < 1.

Proposition 1. Let A1�A4 hold for the model of equations (14) and (15). The structural
parameters of the triangular system are identi�ed.

Proof. All proofs, unless otherwise stated, are given in the Appendix.

Identi�cation under Proposition 1 is a product of the auto- and cross-covariances of
R1;t�2;t and �22;t dictated by the structural form of Ht in equation (16). Given A1�A2, equa-
tion (19) can be solved in reduced form, and given A3, the auto- and cross-covariances from
that reduced form exist. Equation (55) speci�es the relationship between the �rst and second
order of those auto- and cross-covariances as a function of the parameters from the reduced
form of equation (17). Inspection of that function in equation (56) reveals identi�cation of
0 given A4. According to Proposition 2.1 of Iglesias and Phillips (2004), if the structural
form errors of a triangular system follow a bivariate diagonal GARCH process, the reduced
form errrors, while still GARCH, will not (except under severe restrictions) also be diagonal.
Equation (56) demonstrates how this departure from diagonality supports identi�cation of
the triangular system.
Proposition 1 treats the structural parameters of Ht in equation (16) as nuisance parame-

ters and demonstrates that identi�cation of 0 follows from the identi�cation of two com-
posite functions of those parameters, �120 and �220. Recall that C4 is a necessary condition
for A3, requiring the covariance between �1;t and �2;t to be time-varying. Relaxing C4 is the
subject of the following proposition.

Proposition 2. Let A1, A2 where a11;10 = b11;10 = 0, C1 and C3 hold for the model of
equations (14) and (15). De�ne �220 = a222;10 + b222;10. The structural parameters of
the triangular system are identi�ed.

Identi�cation under Proposition 2 drives from cov(�1;t�2;t; Zt�1) = 0, where Zt�1 =�
�22;t�1 � � � �22;t�l

�0 for �nite l � 1. The reduced form of this zero covariance restriction
produces identi�cation as seen in equation (60). Proposition 1 requires both �1;t and �2;t to
follow GARCH(1,1) processes. Proposition 2, on the other hand, continues to hold if A2 de-
�nes some alternative form of conditional heteroskedasticity for �1;t. The identi�cation result
of Proposition 2 depends upon a constant conditional covariance and a GARCH(1,1) process
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for �2;t. The second-moment dynamics of �1;t do not play a substantiative role. Theorem 1 of
Lewbel (2004) reaches the same conclusion.
Since identi�cation under either Proposition 1 or 2 depends critically on the GARCH

structure, rationalizing this structure is an important aspect of the discussion. Prono (2006)
explores non-diagonal ARCHmodels that still support identi�cation of the triangular system.
Nelson (1992) examines the ability of misspeci�ed ARCH models to consistently estimate
the conditional covariance matrix of certain stochastic processes, �nding that for processes
well approximated by a diffusion without jumps, the multivariate GARCH(1,1) model pro-
vides consistent conditional covariance estimates. Nelson and Foster (1994) build upon this
result by formulating the conditions under which the univariate GARCH(1,1) model provides
asymptotically optimal conditional variance estimates. In this paper, identi�cation follows
from a consistent treatment of the conditional covariance matrix. The consistency results
of Nelson (1992) link Proposition 1 to a class of continuous time processes commonly em-
ployed in modern �nance theory. The asymptotic optimality results of Nelson and Foster
(1994) apply directly to Proposition 2.

4 Estimation
Consider estimation of equations (14) and (15) under either Proposition 1 or 2. Let �t =�
�1;t �2;t

�0 and et = � �1;t�2;t �22;t
�0. In addition, �e = � �12 �22

�0, where �12 = c2c3
1��12

and �22 =
c23

1��22
. The parameter matrices � and Z are de�ned as � =

�
�12 0
0 �22

�
and

Z =

�
�120 0
0 �220

�
, where

�2i20 = E
h�
�i;t�2;t � �i2

�2i
; i = 1; 2: (22)

Finally, de�ne  as the set of parameters f�1; �2; ; c2; c3; �12; �22g. Consider the
following set of vector functions:

U1
�
 ; Yt; St�1

�
= Xt 
 �t;

U2
�
 ; Yt; St�1

�
= et � �e;

U3
�
 ; Yt; St�1

�
= vec

h
Z�1

h
(et � �e)

�
et�2 � �e

�0 � � (et � �e)
�
et�1 � �e

�0i
Z�1

i
:13

13The matrix operator 
 is the kronecker product. The vec [�] operator stacks the columns of an (m� n)
matrix into an (mn� 1) vector.
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Stack U1, U2, and U3 into a single vector U .

Corollary 2. Let the assumptions underlying either Proposition 1 or 2 hold for the model of
equations (14) and (15). De�ne �t, et, �e,  and U

�
 ; Yt; St�1

�
as above. Denote the

set of all possible values that  might take on as 	, and de�ne  0 to be the true value
of  . The only value of  2 	 that satis�es E [U ( ; Yt; St�1)] = 0 is  =  0.

Corollary 2 nests the results of both Propositions 1 and 2 into a single set of moment
conditions. E [U1] = 0 relates to the conditional means of equations (14) and (15), while
E [U2] = 0 de�nes the unconditional covariance of �1;t and �2;t as well as the unconditional
variance of �2;t. Given the parameters �120 and �220 de�ned in equation (22), E [U3] = 0
describes the auto- and cross-correlations implied by equation (16), nesting a zero auto- and
cross-correlation for �1;t�2;t as a special case.
From Corollary 2, Hansen's (1982) GMM is a natural choice for estimating  . The

standard GMM estimator is

b = argmin
 2	

�
1

T

TP
t=1

U ( ; Yt; St�1)

�0cW�1
�
1

T

TP
t=1

U ( ; Yt; St�1)

�
: (23)

Consistency results for this estimator given dependent data can be found in Newey and Mc-
Fadden (1994). Standard regulatory conditions require 	 to be compact, a fact that needs
to be reconciled with A4. Suppose j�12j � �220. Then one such reconciliation might be to
de�ne 	 so that the quotient of the �nal two elements of every  2 	 is �nite and exclu-
sive of an open neighborhood of one. Asymptotic normality of equation (23) requires �2;t
to be eighth-moment stationary. Alternative estimators with potentially better �nite sample
properties (for example, Generalized Empirical Likelihood) can be used instead of GMM�
see Newey and Smith (2004). If any of the moment conditions in equation (23) are weak,
then the alternative distribution theory of Stock and Wright (2000) is potentially applicable.
Finally, ef�ciency gains result if the set of vector functions

U3+p
�
 ; Yt; St�1

�
= vec

h
Z�1

h
(et � �e)

�
et�p � �e

�0 � �p�1 (et � �e)
�
et�1 � �e

�0i
Z�1

i
;

p = 3; : : : ; Q;

is appended to U . West (2002) discusses this result in the context of AR processes with
GARCH errors. These functions involve higher-order autocorrelations from the GARCH
process.
Based on the proof to Proposition 1, a less ef�cient estimator can be constructed using

conventional time series software through the following steps.
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STEP 1: Estimate equation (15) via maximum likelihood, specifying

h22;t =
�
c23
�
+
�
�22;1

�
�22;t�1 +

�
�22;2

�
h22;t�1;

as the conditional variance of �2;t, to obtain b�2;t and bh22;t.
STEP 2: Regress Y1;t on Xt to obtain the reduced-form residuals bR1;t.
STEP 3: Estimate via maximum likelihood

R1;t�2;t = (c12) +
�
�12;1 + �12;4

�
R1;t�1�2;t�1 +

�
�12;2

�
�22;t�1 (24)

+
�
�12;3

�
h22;t�1 �

�
�12;4

�
w12;rt�1 + w12;rt:

From the resulting parameter estimates, obtain b as
b = b�12;2 + b�12;3�b�22;1 + b�22;2�� �b�12;1 + b�12;4� : (25)

STEP 4: Estimate b�1 as b�1 = � TP
t=1

XtX
0
t

��1 TP
t=1

Xt

�
Y1;t � Y2;tb�. Obtaining estimates of

the remaining elements in  is straightforward given b�1;t and b�2;t.
STEP 1 estimates �20 as well as h22;t from equation (17), where �22;1 = a222;1, and �22;2 =

b222;1. Note that the reduced-form expression of h12;t in equation (21) is

h12;rt = (c120) +
�
�12;10

�
R1;t�1�2;t�1 +

�
�12;20

�
�22;t�1 (26)

+
�
�12;30

�
h22;t�1 +

�
�12;40

�
h12;rt�1;

where c120 = (c20c30 + 0c
2
30), �12;10 =

�
a11;10a22;10

�
, �12;20 = 0

�
�22;10 � �12;10

�
, �12;30 =

0
�
�22;20 � �12;40

�
, and �12;40 =

�
b11;10b22;10

�
. Equation (26) can be rewritten as equation

(24) by letting w12;rt = R1;t�2;t � h12;rt. The result is an ARMA(1; 1) speci�cation with
weakly exogenous covariates �22;t�1, and h22;t�1. Estimation of this speci�cation is feasible
given the products of steps 1 and 2. Equation (25) is the �nite sample representation of
equation (57). Since equation (56) represents the parameters governing the reduced-forms of
h12;t and h22;t, equation (25) remains valid under the case of a constant conditional covariance
where �12;10 = �12;40 = 0 .
The advantage to steps 1�4 is that they are relatively straightforward to implement. The

disadvantage is that convergence can be an issue, since the parameters governing the AR and
MA components in equation (24) are likely to be of similar magnitudes. Standard errors are
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also not available for STEP 3 due to the inclusion of generated regressors from STEP 2. If
steps 1 and 2 are estimated simultaneously, then robust standard errors for STEP 3 can be
calculated using the theory of two-step estimators�see Newey and McFadden (1994).
In practice, this simple procedure can provide consistent starting values for  as well as

estimates of �2i20 in equation (22) for the GMM estimator.

5 Monte Carlo
The Monte Carlo simulations draw data from the structural model of equations (14)

and (15) in the case where �10 = �20 = 0 and 0 = 1. The vector of errors in equa-
tion (20) is parameterized according to equation (16) assuming Vt � N (0; I2). Values for
the individual elements of Ak0 and Bk0 in A2 are selected such that the ARCH terms for
h11;t, h12;t, and h22;t are 0:05, 0:04, and 0:10, while the GARCH terms are 0:90, 0:80, and
0:80.14 Let C = vech (C0), where C0 is de�ned in A2. C is speci�ed for three covari-
ance regimes: low, medium, high. Cl = (0:22; 0:05; 0:32), Cm = (0:20; 0:10; 0:32), and
Ch = (0:10; 0:20; 0:32). From equation (22), �222 = 2:19 across all three regimes, while
�212h = 1:03, �212m = 0:91, �212l = 0:90.15 For each of the three regimes, simulations are
conducted with Q = 2; 4; 8; 16 lags and sample sizes T = 1260; 2520. These two sample
sizes re�ect daily returns recorded over 5 and 10 years, respectively. The intent of these sim-
ulation exercises is to study the �nite sample properties of the single step GMM estimator
for varying covariance strengths across different lag lengths and sample sizes.
Table 1 shows results for  of the Monte Carlo simulations across 5000 trials of T =

1260; 2520 observations, reporting the following robust measures of central tendency and
dispersion: median bias (Med. Bias), median absolute error (MDAE), the difference between
the 0:1 and 0:9 quantiles (Decile Range).16 The standard deviation (SD) of  is also reported.
Although not a robust measure, the standard deviation does give an indication of outliers. In
order to avoid initialization effects, all simulations discard the �rst 200 observations. The
parameter values for the simulations satisfy A1�A4. For each simulation trial, the estimates
for those values are not restricted to ensure that the same assumptions hold. The starting
values for each trial, however, are the true values of the parameters.
At Q = 2, estimates of  are accurate across all levels of covariance between �1;t and �2;t

(hereafter denoted �12), with a maximum bias of 0:3%. As Q increases, so too does the bias
14These values re�ect the high GARCH low ARCH speci�cations typically implied by asset return data. Fur-

thermore, the speci�ed ARCH and GARCH terms satisfy the inequality restriction of Theorem 2 in Bollerslev
(1986) for the existence of a fourth moment for both �1;t and �2;t.
15Values for �212 and �

2
22 are determined through simulation. Series of �t are constructed from equation (20)

with 7560 observations across 10000 trials. For each trial, the variance of �1;t�2;t and �22;t is estimated. The
values for �212 and �

2
22 are determined as the median of these estimates.

16Robust measures are used because of concerns over the existence of moments.
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in , thus supporting the �nding of Newey and Smith (2001) regarding the GMM estimator.17
The level of this bias tends to be small for low levels of �12. For example, at �12 = 0:1, the
maximum bias is 7%. The size of this bias, however, increases signi�cantly with �12. At
�12 = 0:2, the maximum bias is approximately 14%, while at �12 = 0:4 the maximum bias is
30%. In general, the bias in  increases with �12 for a givenQ. However, for low levels ofQ,
the difference in bias is less as �12 increases and so too is the level of the bias. Irrespective
of Q, the size of the bias decreases with T .
Higher values of Q, while tending to be associated with higher biases in , also tend to

be associated with fairly substantial declines in the dispersion of , evidencing the ef�ciency
gains noted by West (2002). At Q = 2, �12 = 0:1, and T = 1260, the decile range for 
is approximately 1:3, while the standard deviation is nearly 1:2. At Q = 16, for the same
values of �12 and T , the decile range drops to 0:32, while the standard deviation falls to 0:13.
This same tendency of reduced dispersion can be seen across the different values of �12 and
T as Q increases, though on a more muted scale.
The evidenced bias-variance trade-off regarding Q deserves formal attention. Selection

criteria for Q in the spirit of Donald, Imbens, and Newey (2002) would bene�t the estimator
described in this paper.

6 Methodology
Begin by expressing equations (3) and (4) in terms of excess returns over an observable

risk free rate r, letting Yi;t be the ith element of R � r1N and Yp;t = Rp;t � r. Individual
excess asset returns are then related to excess proxy returns by

Yi;t = X
0

t (�i � �mi) + YP;ti + �i;t; i = 1; : : : ; N; (27)

where
Yp;t = X

0

t�p + �p;t: (28)

Consider the special case of Xt only containing a constant term.18 From equation (3), the
vector b� can be obtained by sequentially estimating equations (27) and (28) for each i using
17These authors demonstrate that a substantial portion of the bias in the GMM estimator speci�ed with many

moment conditions (the magnitude of which is potentially quite large) can be attributed to correlations between
U in Corollary 2 and the derivative of the moment function.
18Forcasting instruments are not included inXt for three reasons: (i) such instruments are generally unavail-

able at the high frequencies best suited for the estimator developed in sections 3 and 4 (see the Monte Carlo
results from Section 5), (ii) excluding such instruments expedites the process (yet to be described) of bootstrap-
ping a distribution for bd0b��1e bd in equation (12), (iii) specifying expected excess returns as time-invariant links �
(see Lemma 1 (Shanken)) to unconditional mean-variance space and focuses attention on the effects of � (see
Corollary 1) on the proxy's relative position with that space.
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the single-step GMM estimator withW = I and the moment conditions speci�ed in Corol-
lary 2. In addition, Q = 5.19 Steps 1�4 in section 4 are used to obtained starting values
for the GMM estimator. The vector b� from equation (11) can be consistently obtained by
sequentially regressing �i;t on �p;t.20 A key contribution of Corollary 1 is the decomposition
of the proxy beta into components � and �. The �rst component represents the traditional
interpretation of beta (i.e., the sensitivity of individual asset returns to changes in the market,
or proxy, return) and, indeed, � would equal the proxy beta if cov (e; P ) = 0 (see equa-
tion (11)). An empirical question is to what extent can � be distinguished as a signi�cant
contributor to the decomposition? Recognizing that b� is the product of a two-step estima-
tor, standard errors are obtained via the bootstrap. Suppose that each pair of innovations
�t =

�
�i;t �p;t

�0 for i = 1; : : : ; N can be parameterized according to equation (20), where
Ht is speci�ed following A2. Then bHt can be obtained by �tting a bivariate BEKK model tob�t, and the bootstrap can be implemented on the individual elements of � bH�1=2

t

�b�t.
Let �t =

�
�1;t : : : �N;t

�0. From equation (13), bd are the pricing errors from a cross-
sectional GLS regression of

�
1
T

TP
t=1

Rt � r1N

�
on
�b� + b��, using b�e = 1

T

TP
t=1

b�tb�0t as the
error covariance matrix. In order to test the inequality of equation (12) under the special case
that � = 0 and �t are homoskedastic, Shanken (1987) employs a noncentral F distribution.
Given that identi�cation of � and � depends on heteroskedastic errors, such a distribution
cannot be applied in testing the pricing restriction of Corollary 1. Instead, the bootstrap
will again be employed to determine a distribution for bd0b��1e bd. The manner for conducting
the bootstrap is an extension of the one described above. In particular, repeat the following
steps: (i) bootstrap bVt, (ii) reconstruct b�t using bHt, (iii) reconstruct Yi;t and Yp;t using b�t and
the parameter estimates from the single-step GMM estimator.
Thus far, the left-hand side of equation (12) is afforded an empirical treatment. If �2p is

known, an upper bound for � that satis�es Corollary 1 at a standard 5% signi�cance level
can be determined as that value for which �2P (b�2 � 1) lies above 95% of the bootstrapped
19The Monte Carlo study reveals that Q should be kept modest in order to limit the bias in bi. Q = 5 seems

sensible given this �nding as well as the fact that the data is measured at a daily frequency.
20Let b�i = TP

t=1
�i;t�p;t=

TP
t=1
�2p;t, the OLS estimate from a regression of�i;t on �p;t without a constant term.

p limb�i = p lim

�
1
T

TP
t=1
�i;t�p;t

�
p lim

�
1
T

TP
t=1
�2p;t

� =
cov

�
�i;t; �p;t

�
�2
�
�p;t
� ;

by the Slutsky and Khinchine's theorem, respectively.
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distribution for bd0b��1e bd. Values of � > b� do not support the inequality of equation (12), and
if the prior for �0 > b�, then the pricing restriction of Corollary 1 is rejected. In practice,
of course, �2p is not known. One can use the point estimate b�2p = T

1
T

P
t=1

YP;t=b�2 �Yp;t��where
b�2 �YP;t� = bc23= h1� �ba222;1 +bb222;1�i with bc3, ba22;1, and bb22;1 de�ned by A2�as the value for
�2p. Since there is likely to be substantial variation in b�2p, one can also bootstrap a distribution
forb�2p following the steps outlined above and use different values from within that distribution
to de�ne a range for �2p. The empirical results (to be discussed) rely on this approach.
In order to assess the impact of non-zero covariances between �i;t and �p;t on the rela-

tive ef�ciency of the proxy and determine whether this impact can reverse an inference on
the pricing restriction of Corollary 1, the method for bootstrapping bd0b��1e bd and �nding the
value of � that satis�es equation (12) for 95% of the resulting distribution is also conducted
assuming � = 0. In this case, b� is obtained by sequentially estimating equation (27) by
OLS. The other elements in equation (12) are estimated in the same manner described above.
Bootstrapping the distribution of bd0b��1e bd also occurs in an analogous fashion, except that
h12;t = 0 inHt, meaning that bHt can be constructed from univariate GARCH(1,1) models of
�i;t and �p;t. Yi;t and Yp;t can then be reconstructed usingb�t (which assumes a zero covariance)
and the parameter estimates from the OLS estimator.

7. Results
From equations (27) and (28), let Yi;t be the daily excess return on the ith capitalization-

based decile of NYSE/AMEX/NASDAQ stocks, and de�ne Yp;t as the daily excess return on
the value-weighted index of all NYSE/AMEX/NASDAQ stocks.21 All stock return data is
from CRSP. The risk free rate is the one-month Treasury bill rate from Ibbotson Associates.
The time period considered is June 1, 1965 through May 31, 2002. This overall period
is subdivided twice: �rst into 3 subperiods of approximately 12 years each; second into 5
subperiods of approximately 6 years each, with the subperiod covering December 2, 1983
through January 1, 1990 excluded from consideration.22 The length of the subperiods is
chosen to closely correspond with the sample sizes utilized in the Monte Carlo experiment.
The �rst three 6-year subperiods correspond to Subperiods 3�5 in Shanken (1987) in date
range, though not in return frequency.23

21The decile portfolios exclude �rms for which a market value cannot be computed at the end of each June.
The value-weighted index includes all stocks on the Exchanges on any given day and, therefore, is not a redun-
dant asset.
22The exclusion of this subperiod results from the inability to obtain an bHt that conforms to A1�A4, presum-

ably because of the '87 crash.
23Shanken considers monthly returns.
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Table 2 reports point estimates of the ten elements within b� along with their bootstrapped
standard errors and 95% con�dence intervals for the three 12-year subperiods. In all cases,
the bootstrap is implemented for 2000 repetitions. The upper and lower bounds of the 95%
con�dence intervals are the 2:5 and 97:5 percentiles of the bootstrapped distribution for eachb�. Signi�cant b�s are found in all three subperiods. Across the three subperiods, signi�cant b�s
are found for each of the decile portfolios except one. The highest concentration of signi�cantb�s is found in the �rst subperiod, where these b�s tend to be associated with portfolios of
smaller- and medium-sized stocks. These �ndings show that the proxy beta decomposition
of Corollary 1 enjoys empirical support.
Table 3 presents the value of � that supports the inequality of equation (12) for (1� �)%

of the boostrapped distribution of bd0b��1e bd calculated over 2000 repetitions for four values
of �2p for each of the three 12-year subperiods. Values of the proxy beta (or its two part de-
composition) within bd are estimated by either OLS or single-step GMM. The four values of
�2p are annualized and reported as Sharpe ratios (i.e., �p =

�
252� daily �2p

�1=2) to facilitate
interpretation. The lowest value, �p = 0:169, corresponds to the median of the bootstrapped
distribution of b�2p and implies an expected excess proxy return of 3:39% on a standard de-
viation of 20%.24 The middle two values, �p = 0:313 and �p = 0:493, correspond to the
point estimate of b�2p and the 95th percentile of the bootstrapped distribution of b�2p and imply
expected excess proxy returns of 6:25% and 9:87%, respectively (also on a standard devi-
ation of 20%). The upper value, �p = 1:00, implies an expected excess proxy return of
20%. This �nal value is chosen as an extreme upper bound, since the likelihood of �p as high
as one seems remote. The time period considered for b�2p is 6/1/65�5/31/02. The bootstrap
distribution for b�2p is calculated over 10000 repetitions.
Apparent from Table 3, across the three 12-year subperiods, the pricing restriction of

Corollary 1 only holds if the proxy is quite inef�cient. This inef�ciency is re�ected in �
needing to be very low in order for the inequality of equation (12) to be satis�ed. For exam-
ple, at � = 0:05, b� = 0:073 for the smallest value of �p in the �rst subperiod. The highest b�
is recorded in the third subperiod at b� = 0:486 when � = 0:05 and �p = 1. Across all values
of �p, b� increases from the �rst subperiod to the third. For the GMM estimator, b� is over
20% higher in the third subperiod than in the �rst, suggesting a reduction in pricing errors
between the subperiods. However, if �0 � 0:90 as suggested by Roll (1977), then Table 3
provides strong evidence against the CAPM.
Of course, the sound rejection of the CAPM on daily data is not a surprising result.

The primary intent of this empirical exercise, however, is not to investigate the level of � that
satis�es equation (12) but, rather, the relative difference in �when� is allowed to be nonzero.
24A 20% standard deviation is consistent with daily return data.
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Table 2 demonstrates many instances where nonzero b�s are found. The question is, what
effect do these nonzero b�s have on a test of Corollary 1? Table 3 lists the values of � obtained
by using the OLS and single-step GMM estimators on equation (27). Table 4 summarizes the
percentage difference in � implied by the GMM estimator relative to OLS. These percentage
differences are uniformly negative, supporting the assertion of Section 2 that endogeneity
of a proxy should decrease its ef�ciency relative to the market return. In addition, these
differences can imply over a 20% reduction in the relative ef�ciency of the proxy, where the
level of these differences is stable across the different values of �p. The subperiod during
which these approximate 20% reductions occur also registers the highest concentration of
nonzero b�s. To help gauge the impact of a 20% reduction in relative ef�ciency, suppose that
for the same proxy measured at a lower frequency of returns, b� = 0:90 ignoring the effects
of �. If accounting for � reduces b� to 0:72, then the inference from the test is, indeed, very
different. In the latter case, the proxy is found to explain only half (0:722 = 0:52) of the
variance in the market return if the CAPM is true, whereas in the former case, the proxy is
erroneously thought to explain over 80% of the variance.
Tables 5A and 5B report point estimates of the ten elements within b� along with their

bootstrapped standard errors and 95% con�dence intervals for the �ve 6-year subperiods.
Signi�cant b�s are found in each of the �ve subperiods except one, while across the �ve
subperiods, signi�cant b�s are found for each of the decile portfolios. In contrast to the three
12-year subperiods, concentrations of signi�cant b�s are not limited to the earlier subperiods
and when such concentrations do occur, they are not exclusive to small- and medium-sized
portfolios.
Table 6 presents the value of � that supports the inequality of equation (12) for (1� �)%

of the bootstrapped distribution of bd0b��1e bd calculated over 2000 repetitions for four values of
�2p for each of the �ve 6-year subperiods. As in Table 3, the level of � supporting the pricing
restriction in Corollary 1 remains quite low. For � = 0:05, the minimum value of b� found
using the single-step GMM estimator is b� = 0:05, while the maximum value is b� = 0:391.
There remains an increasing trend in b� from the �rst subperiod to the �fth, though the size of
this trend is decidedly more modest.
Table 7 presents the percentage difference in � implied by the GMM estimator relative

to OLS for each of the �ve subperiods. These percentage differences are negative except in
the fourth subperiod, where (though positive) they are close to zero. In the second subpe-
riod, an approximate 20% reduction in the relative ef�ciency of the proxy is recorded that is
relatively stable across all values of �p. In the �fth subperiod, a reduction of roughly 10%
is recorded that is also stable. A 10% � 20% reduction in the relative ef�ciency of a proxy
can signi�cantly alter the inference from a test of Corollary 1. Even at the lower end of this
range, a b� = 0:90 assuming � = 0 drops to b� = 0:81, resulting in a decline in the explained
variance of the market return by the proxy from 80% to 66%.
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8 Conclusion
Starting from the critique offered by Roll (1977), this paper asks whether an inef�cient

proxy of the unobservable market return is exogenous to the asset returns it is assigned to
price. By generalizing a pricing restriction developed by Shanken (1987), this paper investi-
gates the effect of endogeneity on the relative ef�ciency of a proxy given that the CAPM is
true, in order to determine whether the effect is large enough to reverse an inference about the
validity of the CAPM theory. Empirical evidence is provided in support of a decomposition
of the familiar proxy beta into two parts: one governing the relationship between asset returns
and the proxy, the second governing the relationship between asset returns and components
to the market return that are omitted from the proxy. The ability to separately identify and
estimate these two parts requires a new estimator reliant upon the the GARCH structure of
security returns advocated by Bollerslev, Engle, and Wooldridge (1988) as integral to any
correctly speci�ed asset pricing model. Relative to the literature on GARCH-based identi-
�cation, this estimator distinguishes itself by allowing for time-variation in the conditional
covariance. A Monte Carlo study veri�es the consistency of this estimator and evidences a
bias-variance trade off in the number of lagged instruments used. Controlling for the endo-
geneity of a proxy is found to reduce the relative ef�ciency of that proxy by upwards of 20%,
suggesting that an endogenous proxy can meaningfully impact a test of the CAPM theory.
This result extends beyond the CAPM paradigm to any asset pricing model that speci�es
the market return as a factor and argues for the use of estimators robust to endogeneity of
the proxy in evaluating these models. An interesting extension of this paper would be an
investigation into how the three-moment CAPM of Kraus and Litzenberger (1976) or the
four-moment CAPM of Dittmar (2002) can be estimated given the inef�ciency of any proxy
return and what that inef�ciency implies.
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Appendix

Lemma 1 Assume
E [R j S] = r1N + cov (R; m) ; (29)

where 1N is an N -vector of ones, and r is the observable risk-free rate. Then, there exists a
"price of risk� � that satis�es

d0��1e d � �2 (m) (1� �2); (30)

where
d � E [R j S]� r1N � (� + �)�; (31)

and � = cov (P; m) satis�es equation (30).

A.1. Proof of Lemma 1: From equations (3) and (6),

cov (R; m) = �cov (P; m) + cov (e; m) ; (32)

since E [m j S] = 0. From the linear regression in equation (6),

cov (e; m) =

�
cov (e; P )

�
1

�2 (P )

��
cov (P; m) + cov (e; em) ; (33)

where b = cov(P; m)
�2(P )

. Given equation (11), combining (32) and (33) yields

cov (R; m) = (� + �) cov (P; m) + cov (e; em) : (34)

Substitution of (34) into equation (29) and the result into equation (7) of Lemma 1
(Shanken) produces equation (30), with � = cov (P; m).

A.2. Proof of Corollary 1: From equation (4),

cov
�
Rp; m

�
= cov (P; m) ;

and, therefore,
E
�
Rp j S

�
� r = cov (P; m) : (35)
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From equation (6),
�2 (m) = b2�2 (P ) + �2 (em) : (36)

Given the de�nition of b in A.1 and equation (35), (36) simpli�es to

�2 (m) = �2p + �2 (em) :

Hence, the coef�cient of determination from equation (6) is �2 = �2p
�2(m)

, and equation
(30) in Lemma 1 reduces to (12) and (13).

Lemma 2 Given C1�C2, the eigenvalues ofB0 in equation (18) are less than one in modulus.

A.3. Proof of Lemma 2: For the matrix B0, let bii;0 correspond to the ith element along the
principal diagonal, and let �j be the jth eigenvalue. Consider ordering the eigenvalues
so that

�i = bii;0; i = 1; 2:

Suppose b22;10 � 1. Then a222;10 + b222;10 > 1 since a22;10 > 0, a contradiction. There-
fore, j�2j < 1. Next, note that

j�1j =
��b11;10b22;10�� = ��b11;10�� b22;10 < 1: (37)

Lemma 3 Let Ii be an i� i identity matrix. Given C1�C2, de�ne

M0 = fI4 � [(A0 +B0)
B0]g
�1 (I2 
B0A0)

and
N0 = fI4 � [B0 
 (A0 +B0)]g

�1 (B0A0 
 I2) :

The matrixM0N0 has eigenvalues that are less than one.

A.4. Proof of Lemma 3: C1 and Lemma 2 establish the eigenvalues of (A0 +B0) 
 B0
and B0 
 (A0 +B0) to be less than one in modulus. Let aii;0 and bii;0 each correspond
to the ith element along the principal diagonal of the matrix A0 and B0 in equation
(18), respectively. For the matrixM0N0, de�ne �j as the jth eigenvalue, and consider
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ordering these eigenvalues so that �kcorresponds to the kth element along the principal
diagonal ofM0N0. The matrixM0N0 has three distinct eigenvalues: �1, �2 = �3, �4.

�1 =

 
a11;0b11;0

1� b11;0
�
a11;0 + b11;0

�!2 : (38)

Suppose �1 � 1. Then from equation (38) it follows that�
1� b211;0

� �
1�

�
2a11;0b11;0 + b211;0

��
� 0: (39)

However, the left-hand-side of equation (39) is strictly positive since
��b11;0�� < 1 (see

equation (37)) and

2a11;0b11;0 + b211;0 =
�
a11;0 + b11;0

�2 � a211;0 �
�
a11;0 + b11;0

�2
;

a contradiction. Therefore, �1 < 1. A parallel argument grants that �4 < 1. Simply
substitute a22;0 for a11;0 and b22;0 for b11;0 and follow the same steps outlined above.
Next,

�2 =

 
a11;0b11;0

1� b11;0
�
a22;0 + b22;0

�! a22;0b22;0

1� b22;0
�
a11;0 + b11;0

�! : (40)

Suppose �2 � 1. From equation (40) it follows that�
1� b11;0b22;0

� �
1�

�
a22;0b11;0 + b22;0

�
a11;0 + b11;0

���
� 0: (41)

Since ��b11;0b22;0�� = ��b11;0�� b22;0 � b22;0

and��a22;0b11;0 + b22;0
�
a11;0 + b11;0

��� � a22;0
��b11;0��+ b22;0

��a11;0 + b11;0
�� � a22;0 + b22;0;

however, the left-hand-side of equation (41) is strictly positive, a contradiction. There-
fore, �2 < 1.

Lemma 4 et is covariance stationary if and only if C1�C3 hold.
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A.5. Proof of Lemma 4: Let Ii be an i�i identity matrix. From equation (17), [I2 � (A0 +B0)]E [et] =
C0. C1 grants that E [et] = [I2 � (A0 +B0)]

�1C0. Given equation (19),

cov
�
et; et�i

�
= cov

�
ht; et�i

�
; i = 1; : : : ;1: (42)

Recursive substitution into equation (17) reveals

ht = (I2 �B0)
�1C0 +

1X
j=1

Bj�1
0 A0et�j; (43)

given Lemma 2. Substitution of equation (43) into (42) �nds

cov
�
et; et�i

�
=

1X
j=1

Bj�1
0 A0cov

�
et�j; et�i

�
: (44)

For i = 1; 2, equation (44) yields

cov
�
et; et�2

�
= (A0 +B0) cov

�
et; et�1

�
; (45)

and, in general,

cov
�
et; et�i

�
= (A0 +B0)

i�1 cov
�
et; et�1

�
; (46)

given C1. Equation (46) speci�es that the higher-order autocovariances of et exist if
and only if the �rst-order autocovariance of et exists. Substitution of equation (46) into
(44) for i = 1 produces

cov
�
et; et�1

�
= A0var (et) +

1X
j=2

Bj�1
0 A0cov

�
et�1; et

�
(A0 +B0)

j�20 : (47)

Applying the vec (�) operator to both sides of equation (47) yields

vec
�
cov
�
et; et�1

��
= (I2 
 A0) vec [var (et)] + (48)" 1X

j=2

(A0 +B0)
j�2 
Bj�1

0 A0

#
vec
�
cov
�
et�1; et

��
;
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while doing the same to the transpose of equation (47) produces

vec
�
cov
�
et�1; et

��
= (A0 
 I2) vec [var (et)] + (49)" 1X

j=2

Bj�1
0 A0 
 (A0 +B0)

j�2

#
vec
�
cov
�
et; et�1

��
:

In equation (48),
1P
j=2

(A0 +B0)
j�2
Bj�1

0 A0 =M0 while
1P
j=2

Bj�1
0 A0
(A0 +B0)

j�2 =

N0 in equation (49), whereM0 and N0 are de�ned in Lemma 3. Both of these results
follow from C1 and Lemma 2. Substitution of equation (49) into equation (48) pro-
duces

[I4 �M0N0] vec
�
cov
�
et; et�1

��
= P0vec [var (et)] ;

where P0 = fI4 � [(A0 +B0)
B0]g
�1 [I2 � (B0 
B0)] (I2 
 A0). Then,

vec
�
cov
�
et; et�1

��
= [I4 �M0N0]

�1 P0vec [var (et)] (50)

given Lemma 3. Equation (50) is �nite if and only if vec [var (et)] is �nite. Since
E
�
wt j St�1

�
= 0 in equation (19),

var (et) = var
�
ht
�
+ �:

Straight forward (though tedious) matrix algebra reveals that

var
�
ht
�
= fI4 � [(A0 +B0)
 (A0 +B0)]g

�1 (A0 
 A0) �;

given C1. As a result,
var (et) = Q0�;

where Q0 = fI4 � [(A0 +B0)
 (A0 +B0)]g
�1 (A0 
 A0) + I4. Equation (50) then

becomes
vec
�
cov
�
et; et�1

��
= [I4 �M0N0]

�1 P0Q0vec [�] ; (51)

which is �nite given C3.

A.6. Proof of Proposition 1: Given A1 and A2,

Ri;t = Yi;t �X 0
tE [XtX

0
t]
�1
E
�
XtYi;t

�
; i = 1; 2; (52)
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where R2;t = �2;t. Let Rt =
�
R1;t �2;t

�0
. From equation (52), the relationship

between Rt and �t is
Rt = �0�t; (53)

where �0 =
�
1 0
0 1

�
.Let rt =

�
R1;t�2;t �22;t

�0. Using equation (53), the relation-
ship between rt and et is

rt = �0et: (54)

Substituting equation (54) into (45) from A.5 results in

cov
�
rt; rt�2

�
= �0 (A0 +B0) �

�1
0 cov

�
rt; rt�1

�
: (55)

�0 (A0 +B0) �
�1
0 is identi�ed by A3. Let �ij;r0 be the element in the ith row and jth

column of

�0 = �0 (A0 +B0) �
�1
0 =

�
�120 0 (�220 � �120)
0 �220

�
: (56)

Given A4, 0 is identi�ed by

0 =
�12;r0

�22;r0 � �11;r0
: (57)

Given identi�cation of 0, �10 is identi�ed by �10 = E [XtX
0
t]
�1E

�
Xt

�
Y1;t � Y2;t0

��
.

�20 is identi�ed by �20 = E [XtX
0
t]
�1E

�
XtY2;t

�
. The structural innovations �1;t are

identi�ed by �1;t = Y1;t �X 0
t�10 � Y2;t0.

A.7. Proof of Proposition 2: Since a11;10 = b11;10 = 0,

cov(�1;t�2;t; Zt�1) = 0; (58)

where Zt�1 =
�
�22;t�1 � � � �22;t�l

�0 for �nite l � 1. A1 and A2 identify R1;t and �2;t
as equation (52). From equation (53), write �1;t as

�1;t = R1;t � �2;t0: (59)

Substituting equation (59) into equation (58) yields

cov(R1;t�2;t; Zt�1) = cov(�22;t; Zt�1)0; (60)
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where existence of the individual row entries to cov(�22;t; Zt�1) is established by Lemma
4. Let 
 = cov(�22;t; Zt�1). 0 is identi�ed as

0 = (

0
)

�1


0
cov(R1;t�2;t; Zt�1):

Given identi�cation of 0, the identi�cation of �10, �20, and �1;tfollows from A.6.

A.8. Proof of Corollary 2: By equations (14)�(16), U1 = Xt 
 �t and

U3
�
 ; Yt; St�1

�
= vec

h
Z�1

h
(et � �e)

�
et�2 � �e

�0 � � (et � �e)
�
et�1 � �e

�0i
Z�1

i
:

E [U2] = 0 means that E [et] = �e, so E [U ] = 0 is equivalent to E [Xt 
 �t] = 0 and
cov
�
et; et�2

�
= (A+B) cov

�
et; et�1

�
. Following, then, from either A.6 or A.7, the

only ' 2 	 that satis�es E [U ( ; Yt; St�1)] = 0 is ' = '0.
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TABLE 1
T=1260 T=2520

Med. Decile Med. Decile

Q �12 Bias MDAE Range SD Bias MDAE Range SD

0.1 0.000 0.089 1.275 1.195 0.000 0.071 1.008 0.654

2 0.2 0.000 0.093 1.167 1.223 0.000 0.071 0.922 0.727

0.4 0.003 0.094 1.038 0.899 0.002 0.082 0.866 0.647

0.1 0.033 0.120 0.567 0.257 0.028 0.119 0.555 0.245

4 0.2 0.069 0.131 0.567 0.252 0.060 0.124 0.552 0.241

0.4 0.145 0.171 0.593 0.256 0.129 0.153 0.582 0.252

0.1 0.057 0.110 0.409 0.166 0.056 0.107 0.387 0.157

8 0.2 0.118 0.136 0.414 0.167 0.111 0.130 0.396 0.160

0.4 0.252 0.252 0.470 0.185 0.220 0.221 0.460 0.180

0.1 0.070 0.097 0.319 0.127 0.067 0.091 0.299 0.118

16 0.2 0.143 0.147 0.330 0.130 0.129 0.133 0.314 0.123

0.4 0.303 0.303 0.381 0.147 0.260 0.260 0.379 0.146

Notes to Table 1: Monte Carlo studies were conducted across 5000 trials for T = 1260; 2520 observations.
Results for the parameter  are shown. Q denotes the number of lags used in the single step GMM estimator. �12 is the
level of covariance between innovations to the given triangular system. The unconditional variance of each innovation is
one in all cases. Med. Bias is the median bias of the parameter estimates relative to the true value 0 = 1. MDAE is the
median absolute error of the parameter estimates relative to the true value. Decile Range is the difference between the
0:10 and 0:90 quantiles of the parameter estimates, while SD is the standard deviation.
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TABLE 2
6/1/65 - 9/30/77 10/3/77 - 1/31/90 2/1/90 - 5/31/02

Conf. Interval Conf. Interval Conf. Interval

Est. S.E. 95% Est. S.E. 95% Est. S.E. 95%

�1 0.436 0.211 0.008 0.716 -0.067 0.393 -0.162 0.181 -0.169 0.079 -0.246 0.041

�2 0.371 0.141 0.014 0.517 -0.077 0.192 -0.180 0.299 -0.117 0.091 -0.223 0.135

�3 0.292 0.092 0.028 0.369 0.002 0.809 -0.233 0.678 -0.202 0.071 -0.231 0.019

�4 0.311 0.095 0.041 0.400 -0.067 0.116 -0.138 0.263 0.216 0.068 -0.010 0.247

�5 0.372 0.116 0.027 0.453 -0.030 0.153 -0.128 0.202 -0.114 0.051 -0.166 0.024

�6 0.345 0.099 0.046 0.410 -0.025 0.097 -0.092 0.175 -0.082 0.039 -0.122 0.030

�7 0.046 0.034 -0.038 0.096 -0.037 0.081 -0.057 0.105 -0.075 0.043 -0.118 0.054

�8 0.147 0.044 0.011 0.177 -0.162 0.031 -0.112 0.000 -0.039 0.062 -0.140 0.104

�9 0.013 0.013 -0.027 0.026 -0.559 0.110 -0.386 -0.001 0.140 0.053 0.001 0.190

�10 -0.079 0.029 -0.120 -0.010 0.157 0.044 0.098 0.260 0.119 0.041 0.001 0.142

Notes to Table 2: �i for i = 1; : : : ; 10 are the individual elements of the vector � in equation (11). Est. are theb�s from a regression ofb�i;t onb�p;t�see equations (27) and (28)�while S.E. are the corresponding bootstrapped standard
errors. The 95% con�dence intervals are formed from the 2.5 and 97.5 percentiles of the bootstrapped distribution for
each b�. In all cases, the bootstrap is implemented for 2000 repetitions.
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TABLE 3
�p

0.169 0.313 0.493 1.00

� � � �
Period Estimator 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

6/1/65 � 9/30/77 OLS 0.090 0.082 0.165 0.151 0.256 0.234 0.473 0.439

GMM 0.073 0.065 0.134 0.119 0.208 0.187 0.396 0.359

10/3/77 - 1/31/90 OLS 0.097 0.088 0.178 0.160 0.275 0.249 0.501 0.461

GMM 0.091 0.081 0.166 0.149 0.258 0.232 0.475 0.435

2/1/90 - 5/31/02 OLS 0.102 0.091 0.186 0.166 0.286 0.257 0.518 0.474

GMM 0.094 0.083 0.171 0.153 0.265 0.237 0.486 0.443

TABLE 4
�p

0.169 0.313 0.493 1.00

� � � �
Period 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

6/1/65 � 9/30/77 -19.41% -21.11% -19.13% -20.87% -18.57% -20.37% -16.15% -18.16%

10/3/77 - 1/31/90 -6.67% -7.12% -6.53% -7.00% -6.26% -6.77% -5.16% -5.77%

2/1/90 - 5/31/02 -8.02% -8.10% -7.85% -7.96% -7.51% -7.69% -6.12% -6.50%

Notes to Tables 3 and 4: �p is an annualized Sharpe ratio (i.e., �p =
�
252� daily �2p

�1=2). �p = 0:169

corresponds to the median of the bootstrapped distribution of b�2p and implies an expected excess proxy return of 3:39%.
�p = 0:313 corresponds to the point estimate b�2p and implies an excess return of 6:25%. �p = 0:493 corresponds to the
95th percentile of the bootstrapped distribution of b�2p and implies an excess return of 9:87%. The time period considered
for b�2p is 6/1/65�5/31/02. The bootstrapped distribution of b�2p is calculated over 10000 repetitions. All implied expected
excess returns assume an annualized standard deviation of 20%. For a given value of �p, Table 3 presents the value of �
that supports the inequality of equation (12) for (1� �)% of the bootstrapped distribution of d0��1e d calculated over
2000 repetitions. Table 4 presents the% difference in � implied by the GMM estimator relative to OLS.
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TABLE 5A
6/1/65 - 7/30/71 8/2/71 - 9/30/77 10/3/77 - 11/30/83

Conf. Interval Conf. Interval Conf. Interval

Est. S.E. 95% Est. S.E. 95% Est. S.E. 95%

�1 -0.040 0.124 -0.306 0.180 0.225 0.197 0.004 0.454 0.023 0.281 -0.164 0.370

�2 -0.020 0.049 -0.121 0.070 0.188 0.092 0.018 0.347 -0.024 0.151 -0.168 0.230

�3 0.090 0.054 -0.049 0.159 0.181 0.077 0.017 0.306 -0.009 0.142 -0.151 0.217

�4 -0.017 0.032 -0.071 0.052 0.172 0.059 0.051 0.276 -0.007 0.106 -0.121 0.159

�5 0.049 0.031 -0.021 0.097 0.141 0.045 0.099 0.254 -0.102 0.055 -0.194 0.001

�6 0.042 0.015 0.009 0.067 0.176 0.069 0.026 0.291 -0.025 0.047 -0.102 0.076

�7 -0.054 0.019 -0.070 0.001 0.046 0.067 -0.106 0.155 -0.066 0.033 -0.117 0.010

�8 -0.034 0.025 -0.072 0.027 0.080 0.045 -0.022 0.156 -0.040 0.027 -0.077 0.028

�9 -0.049 0.016 -0.064 -0.002 0.007 0.028 -0.056 0.053 -0.029 0.013 -0.051 0.000

�10 0.072 0.018 0.001 0.063 -0.016 0.039 -0.076 0.034 0.018 0.035 -0.046 0.072

TABLE 5B
2/1/90 - 3/29/96 4/1/96 - 5/31/02

Conf. Interval Conf. Interval

Est. S.E. 95% Est. S.E. 95%

�1 -0.028 0.051 -0.110 0.081 -0.256 0.076 -0.269 -0.001

�2 -0.710 0.186 -0.689 -0.014 -0.184 0.085 -0.273 0.024

�3 -0.154 0.063 -0.267 -0.012 -0.161 0.075 -0.268 -0.001

�4 -0.151 0.051 -0.250 -0.045 -0.189 0.076 -0.275 0.001

�5 -0.125 0.044 -0.215 -0.035 -0.129 0.056 -0.195 0.002

�6 0.000 0.038 -0.081 0.069 -0.161 0.053 -0.194 -0.001

�7 0.001 0.033 -0.057 0.067 -0.138 0.051 -0.186 -0.001

�8 0.085 0.024 0.029 0.124 0.136 0.060 -0.050 0.186

�9 0.028 0.024 -0.035 0.058 -0.025 0.026 -0.084 0.018

�10 -0.045 0.010 -0.064 -0.026 0.106 0.042 0.001 0.155

Notes to Table 5A and 5B: �i for i = 1; : : : ; 10 are the individual elements of the vector � in equation (11).
Est. are the b�s from a regression of b�i;t on b�p;t�see equations (27) and (28)�while S.E. are the corresponding boot-
strapped standard errors. The 95% con�dence intervals are formed from the 2.5 and 97.5 percentiles of the bootstrapped
distribution for each b�. In all cases, the bootstrap is implemented for 2000 repetitions.
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TABLE 6
�p

0.169 0.313 0.493 1.00

� � � �
Period Estimator 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

6/1/65 - 7/30/71 OLS 0.062 0.057 0.115 0.105 0.179 0.165 0.346 0.321

GMM 0.059 0.053 0.109 0.098 0.171 0.153 0.332 0.300

8/2/71 - 9/30/77 OLS 0.071 0.066 0.131 0.120 0.204 0.188 0.389 0.362

GMM 0.058 0.050 0.106 0.093 0.167 0.145 0.324 0.285

10/3/77 - 11/30/83 OLS 0.054 0.048 0.100 0.089 0.157 0.140 0.306 0.276

GMM 0.050 0.044 0.093 0.082 0.145 0.129 0.285 0.254

2/1/90 - 3/29/96 OLS 0.072 0.063 0.131 0.116 0.205 0.182 0.390 0.350

GMM 0.072 0.063 0.132 0.116 0.205 0.182 0.391 0.351

4/1/96 - 5/31/02 OLS 0.069 0.062 0.127 0.113 0.198 0.177 0.379 0.343

GMM 0.062 0.056 0.113 0.103 0.177 0.161 0.343 0.313

TABLE 7
�p

0.169 0.313 0.493 1.00

� � � �
Period 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

6/1/65 - 7/30/71 -4.62% -7.41% -4.57% -7.34% -4.49% -7.23% -4.10% -6.73%

8/2/71 - 9/30/77 -19.00% -23.35% -18.84% -23.19% -18.49% -22.85% -16.87% -21.25%

10/3/77 - 11/30/83 -7.43% -8.23% -7.39% -8.19% -7.30% -8.11% -6.83% -7.69%

2/1/90 - 3/29/96 0.34% 0.22% 0.32% 0.22% 0.31% 0.22% 0.28% 0.20%

4/1/96 - 5/31/02 -10.82% -9.65% -10.73% -9.56% -10.51% -9.41% -9.52% -8.68%

Notes to Tables 3 and 4: �p is an annualized Sharpe ratio (i.e., �p =
�
252� daily �2p

�1=2). �p = 0:169

corresponds to the median of the bootstrapped distribution of b�2p and implies an expected excess proxy return of 3:39%.
�p = 0:313 corresponds to the point estimate b�2p and implies an excess return of 6:25%. �p = 0:493 corresponds to the
95th percentile of the bootstrapped distribution of b�2p and implies an excess return of 9:87%. The time period considered
for b�2p is 6/1/65�5/31/02. The bootstrapped distribution of b�2p is calculated over 10000 repetitions. All implied expected
excess returns assume an annualized standard deviation of 20%. For a given value of �p, Table 3 presents the value of �
that supports the inequality of equation (12) for (1� �)% of the bootstrapped distribution of d0��1e d calculated over
2000 repetitions. Table 4 presents the% difference in � implied by the GMM estimator relative to OLS.
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