# Liquidity Traps and Monetary Policy: Managing a Credit Crunch

Buera and Nicolini

Discussant: Virgiliu Midrigan

#### Overview

- Study monetary/fiscal policies after credit crunch at ZLB
  - no sticky prices
  - heterogeneous entrepreneurs collateral constrained
  - tighter constraint affects productive, reduces TFP, Y
- Study 2 policies:
  - 1. No monetary intervention: deflation, then inflation
    - costly if nominal debt redistributes away from productive
  - 2. Constant, low inflation target
    - Less misallocation lower TFP decline, less severe recession
    - Prevent real rate from declining, prolong recession

• Entrepreneurs heterogeneous in productivity, z:

$$\max_{c_t, a_{t+1}} \sum_{t=0}^{\infty} \beta^t \log(c_t)$$

- Technology:  $y_t = zk_t$ . Friction:  $k_t \leq \lambda a_t$ ,  $\lambda \geq 1$
- Budget constraint:

$$c_t + a_{t+1} = \max_{k_t} (z - r_t) k_t + (1 + r_t) a_t$$

- Solution:  $k_t = \lambda a_t$  for  $z > r_t$ , 0 otherwise
- Return on a:  $R_t(z) = \lambda \max(z r_t, 0) + 1 + r_t$



$$\max_{c_t, a_{t+1}} \sum_{t=0}^{\infty} \beta^t \log(c_t)$$

s.t.

$$c_t + a_{t+1} = R_t(z)a_t$$

• Solution:  $a_{t+1} = \beta R_t(z) a_t$ 

• Equilibrium  $r_t$  given  $g_t(z, a)$ 

$$\int_{z} \int_{a} k_{t}(z, a) g_{t}(z, a) dadz + B_{t} = \int_{z} \int_{a} a g_{t}(z, a) dadz = A_{t}$$

$$\lambda \int_{z \ge r_t} \int_a a g_t(z, a) da dz = A_t - B_t$$

• Higher B – higher r



• Equilibrium  $r_t$  given  $g_t(z, a)$ 

$$\int_{z} \int_{a} k_{t}(z, a) g_{t}(z, a) dadz + B_{t} = \int_{z} \int_{a} a g_{t}(z, a) dadz = A_{t}$$

$$\lambda \int_{z>r_t} \int_a ag_t(z,a) dadz = A_t - B_t$$

• Higher B – higher r



• Higher B – higher r

- Two effects on Y:
  - ullet higher TFP unproductive drop out
  - lower K high r reduces  $R_t(z) = \lambda(z r_t) + 1 + r_t$
  - overall reduces Y

## Monetary model

- Flex. prices:  $(\Delta M, i)$  alone small effect on allocations
  - But fiscal policy  $(\Delta B)$  changes r
- Suppose  $r^* < 0$  e.g. constrained economy
- Suppose  $\pi = 0$  bad monetary policy
  - ZLB  $(i \ge 0)$  implies  $r \ge -\pi = 0 > r^*$
  - Need to increase B to implement i = 0 and  $\pi = 0$ :
  - Higher r implies drop in Y relative to  $r = r^*$

### Key lessons:

- Strict low  $\pi$  targeting bad idea
  - ullet With ZLB, does not allow r to adjust
  - Amplifies effect of credit crunch
- Tradeoff btw current and future Y declines
- Nature of government transfers important

## Comparison to NK models: inflation

- NK models:  $\pi_t = \kappa y_t + \beta \pi_{t+1}$
- Low inflation due to price stickiness + lack of commitment
  - not poor choice of M.P.
- Question in NK: what is optimal policy given constraints?
- BN: ZLB not an actual constraint on policy
  - E.g., choose high i and low  $\pi$  same r
  - Friedman rule optimal
  - Unlike NK, no distortions from non-zero  $\pi$
  - Such distortions motivate  $\pi$  targeting in NK models
- But very similar lesson: want higher inflation at ZLB



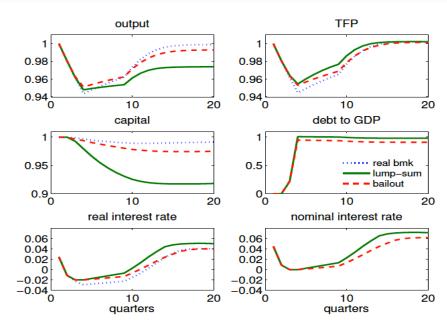
## Comparison to NK model: † Fed balance sheet

- NK models: banks constrained, don't lend entrepreneurs
  - E.g. Gertler-Karadi:  $k_t \leq \lambda a_t$ ,  $k_t$  bank loans
  - Implies  $R_{k,t} r_t$  higher when lower  $\lambda a_t$
  - Direct Fed loans reduce spreads:  $K = k^{bank} + k^{Fed}$
  - Rationale for MBS etc. purchases
- BN would work similarly:
  - Lump-sum transfers vs. transfers targeted to entrepreneurs
  - Even lower Y declines if target to high z
- $\bullet$  High debt, r not necessarily bad inefficient transfers are

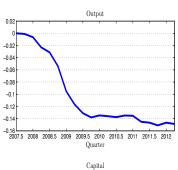


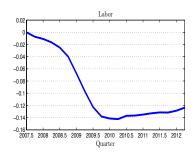
## Questions, comments

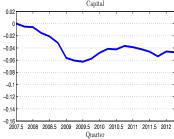
- What is role of transaction frictions?
  - Are Y, K, TFP responses affected?
  - Cashless limit?
- What is optimal policy?
  - Uninteresting in current version: lots instrum., commit.
  - No cost inflation
  - Restrict instruments and study optimal responses
  - Model source of  $k \leq \lambda a_t$ , cost of  $\pi$

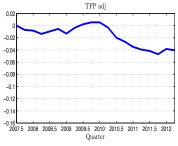

### Questions, comments

- Study optimal monetary policy (M, i) given fiscal (B)
- Are CRS, no uncertainty important for results?
  - $\bullet$  high z never grows out of credit constraint
  - $\bullet$  high r unambiguously increases spreads
  - with DRS high r allows to quicker grow out of CC?
  - Bewley-Ayagari-McGrattan intuition on optimal B and r?


### Questions, comments


- Take a stand: positive or normative?
  - Study policy in an alternative non-NK environment?
  - Or argue model describes recent U.S. experience?
    - low  $\pi$ , high debt?
    - and therefore Fed made bad mistakes
    - contrary to what NK model suggests
    - quantitative evidence BN vs. NK?


#### BN recession




#### U.S. recession









#### Conclusions

- Overall: excellent, important paper
  - Closed-form solutions show mechanism very transparently
  - Explicitly model source of ZLB, decline  $r^*$
  - Important interactions btw  $\pi$  and  $r^*$
  - Raises lots of interesting questions
- One of few to explicitly introduce heterogeneity in monet. model
  - Striking feature recession: differential responses to CC
  - Model can inform on how M.P. can deal with heterogeneity